Well known and Little known Nation
 One person's perspective

K. Adaricheva
Department of Mathematics
Hofstra University

Algebras and Lattices in Hawaii, May 242018

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010 s
- Closure operators and implicational bases
- AAB workshops
- Little known

Malcev Conference 1989

Academ town near Novosibirsk

CONTEMPORARY MATHEMATICS

131
Proceedings of the International Conference on Algebra Dedicated to the Memory of
A. I. Mal'cev
L. A. Bokut

Yu. L Ershov
A. I. Kostrilkn

Editors

Amarcan Mathemetre! Socicty

Proceedings: Preface

In August 1989, more than 700 Soviet algebraists and more than 200 foreign mathematicians convened in Novosibirsk in the former Soviet Union for the International Conference on Algebra. Dedicated to the memory of A. I. Mal'cev, the great Russian algebraist and logician, the conference marked the first time since the International Congress of Mathematicians was held in Moscow in 1966 that Soviet algebraists could meet with a large number of their foreign colleagues. ... The papers span a broad range of areas including groups, Lie algebras, associative and nonassociative rings, fields and skew fields, differential algebra, universal algebra, categories, combinatorics, logic, algebraic geometry, topology, and mathematical physics.

Birkhoff-Malcev Problem and lattices of subsemilattices

Problem (Birkhoff 1945, Malcev 1966)

Describe lattices that can be represented as lattice of sub-quasivarieties (sub-varieties) of some qiasivariety (variety) of algebraic systems.

Birkhoff-Malcev Problem and lattices of subsemilattices

Problem (Birkhoff 1945, Malcev 1966)

Describe lattices that can be represented as lattice of sub-quasivarieties (sub-varieties) of some qiasivariety (variety) of algebraic systems.

Theorem (V.A. Gorbunov and V.I. Tumanov, 1980)

For any quasivariety of algebraic systems \mathcal{K}, there exists an algebraic lattice \mathbf{A} and a quasi-order σ on A such that the lattice $\mathcal{L}_{q}(\mathcal{K})$ of subquasivarieties of \mathcal{K} is represented as $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, \sigma)$, the lattice of algebraic subsets of \mathbf{A} closed under σ. Every lattice $\mathbf{S}_{\mathbf{p}}(\mathbf{A})$ is isomorphic to \mathcal{K} of a quasivariety of predicate systems.

Birkhoff-Malcev Problem and lattices of subsemilattices

Problem (Birkhoff 1945, Malcev 1966)

Describe lattices that can be represented as lattice of sub-quasivarieties (sub-varieties) of some qiasivariety (variety) of algebraic systems.

Theorem (V.A. Gorbunov and V.I. Tumanov, 1980)

For any quasivariety of algebraic systems \mathcal{K}, there exists an algebraic lattice \mathbf{A} and a quasi-order σ on A such that the lattice $\mathcal{L}_{q}(\mathcal{K})$ of subquasivarieties of \mathcal{K} is represented as $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, \sigma)$, the lattice of algebraic subsets of \mathbf{A} closed under σ. Every lattice $\mathbf{S}_{\mathbf{p}}(\mathbf{A})$ is isomorphic to \mathcal{K} of a quasivariety of predicate systems.

In cases when \mathbf{A} can be chosen finite, the representation becomes $\operatorname{Sub}(\mathbf{A}, \wedge, \mathbf{1}, \sigma)$.

Quick time travel forward

- Almost 30 years forward, we replace $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, \sigma)$ by $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$, where H is set of operators on \mathbf{A} preserving arbitrary meets and joins of non-empty chains, and $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$ is the structure of algebraic subsets of \mathbf{A} closed under H.
- As before, \mathbf{A} represents $\operatorname{Con}_{\mathcal{K}}\left(F_{\omega}\right)$, the lattice of relative congruences of quasivariety \mathcal{K} of a free system generated by a countable set.

Quick time travel forward

- Almost 30 years forward, we replace $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, \sigma)$ by $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$, where H is set of operators on \mathbf{A} preserving arbitrary meets and joins of non-empty chains, and $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$ is the structure of algebraic subsets of \mathbf{A} closed under H.
- As before, \mathbf{A} represents $\operatorname{Con}_{\mathcal{K}}\left(F_{\omega}\right)$, the lattice of relative congruences of quasivariety \mathcal{K} of a free system generated by a countable set.
- The work is developed under the working title " A primer of quasivariety lattices" by J.B.Nation, J. Hyndman, J. Nishida, KA.

Quick time travel forward

- Almost 30 years forward, we replace $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, \sigma)$ by $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$, where H is set of operators on \mathbf{A} preserving arbitrary meets and joins of non-empty chains, and $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$ is the structure of algebraic subsets of \mathbf{A} closed under H.
- As before, \mathbf{A} represents $\operatorname{Con}_{\mathcal{K}}\left(F_{\omega}\right)$, the lattice of relative congruences of quasivariety \mathcal{K} of a free system generated by a countable set.
- The work is developed under the working title " A primer of quasivariety lattices" by J.B.Nation, J. Hyndman, J. Nishida, KA.
- About mid-point of this development we thought of $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H)$ in dual form, as $\operatorname{Con}(\mathbf{S}, \vee, \mathbf{0}, G)$, the lattices of congruences of a semilattice \mathbf{S} with monoid of operators G. It was a switch in thinking about quasivarieties as their quasi-equational theories.

Quick time travel into past: Zipper condition

Theorem (Bill Lampe, AU 86)

Every lattice \mathbf{L} representable as $\mathcal{L}(\Sigma)$, the lattice of equational theories extending a given equational theory Σ, satisfies the following condition:
(Zipper) for every $a, c \in L$, and every $B \subseteq L$, if $\bigvee B=1$ and

$$
a \wedge b=c \text { for all } b \in B, \text { then } a=c
$$

Novosibirsk in 1989

Theorem (K.Adaricheva, 1991)

A finite atomistic lattice \mathbf{L} is represented as $\operatorname{Sub}(\mathbf{A}, \wedge, \mathbf{1}$,$) iff it satisfies$ the following properties:
(1) the sum of two atoms contains no more than 3 atoms;
(2) there is no sequence of atoms $a_{0}, a_{1}, \ldots a_{n}=a_{0}$, where a_{i+1}, with index computed modulo n, is contained in the join of a_{i} and another atom b_{i};
(3) and (4) and (5): more technical properties.

Hawai'i before 1991

- Ralph, JB and Jaroslav Ježek worked on monograph "Free lattices";
- finite lower bounded lattices, which are homomorphic images of lower bounded homomorphisms from a free lattice are described as lattices without D-cycles;

Hawai'i before 1991

- Ralph, JB and Jaroslav Ježek worked on monograph "Free lattices";
- finite lower bounded lattices, which are homomorphic images of lower bounded homomorphisms from a free lattice are described as lattices without D-cycles;
- relying on earlier essential ideas of lower bounded homomorphism and D-relation developed in papers by R. McKenzie (1972) and B. Jónsson and J.B.Nation (1977).

Malcev conference

Theorem (K.Adaricheva and V. Gorbunov, 1989)

Every lattice \mathbf{L} representable as $\mathcal{L}_{q}(\mathcal{K})$ admits an equaclosure operator $\nu: \mathbf{L} \rightarrow \mathbf{L}$, which allows to describe all lattices of quasivarieties that may occur within the class $\mathbf{C o (P)}, \mathbf{P}$ a poset.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality

(3) 2010 s

- Closure operators and implicational bases
- AAB workshops
- Little known

In the 90s

- V. Gorbunov gives a talk at B. Jonsson's conference, 1990;
- "Free lattices" published, 1991;
- Alan Day conference, 1992;

In the 90s: continued

R. Freese, K. Kearnes and JB Nation publish paper to 80th birthday of G. Birkhoff, 1995.

Theorem

If the type of quasivariety \mathcal{K} has only finitely many relational symbols, then the lattice $\mathcal{L}_{q}(\mathcal{K})$ satisfies the following quasi-identity:

$$
\&_{0<i<n}\left(x_{i} \leq x_{i+1} \vee y_{i} \& x_{i} \wedge y_{i} \leq x_{i+1}\right) \& x_{0} \wedge \cdots \wedge x_{n-1}=0 \rightarrow x_{0}=0
$$

The presence of an equa-closure operator plays essential role in the proof.

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;
- Viktor Gorbunov works on the book "Algebraic theory of quasivarieties", 1997-98.

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;
- Viktor Gorbunov works on the book "Algebraic theory of quasivarieties", 1997-98.
- JB writes in the song:

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;
- Viktor Gorbunov works on the book "Algebraic theory of quasivarieties", 1997-98.
- JB writes in the song:

There are many things I would like to see, There are many things I would like to see, But Karlovy Vary has only quasivariety;

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;
- Viktor Gorbunov works on the book "Algebraic theory of quasivarieties", 1997-98.
- JB writes in the song:

There are many things I would like to see, There are many things I would like to see, But Karlovy Vary has only quasivariety;

- Viktor used it as opening sentence of his book, 1999;

90s:continued

- Karlovy Vary, International Symposium on General Algebra, 1998;
- Viktor Gorbunov works on the book "Algebraic theory of quasivarieties", 1997-98.
- JB writes in the song:

There are many things I would like to see, There are many things I would like to see, But Karlovy Vary has only quasivariety;

- Viktor used it as opening sentence of his book, 1999;
- "Hotel Slavia Blues" was included into the book "Mathematical songs of Brian Davey", with the fine print that it is written by JB, 2015.

Viktor Gorbunov: 1999

Memorial issue of Algebra Universalis: 2001, KA and W. Dziobiak, guest editors.

Theorem (JB Nation, AU 2001)

Let L be a finite lattice that satisfies $S D_{\wedge}$. Then L fails $S D_{\vee}$ iff there exists B-cycle aBbBa, for some $a, b \in J(L)$.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010 s
- Closure operators and implicational bases
- AAB workshops
- Little known

Convex geometries

- Ralph McKenzie's conference, Vanderbilt, 2002;

Convex geometries

- Ralph McKenzie's conference, Vanderbilt, 2002;
- JB suggested a closure operator on $J i(L)$ of a finite join-semidistributive lattice L so that produced lattice of closed sets would be the largest convex geometry extending L.

Convex geometries

- Ralph McKenzie's conference, Vanderbilt, 2002;
- JB suggested a closure operator on $J i(L)$ of a finite join-semidistributive lattice L so that produced lattice of closed sets would be the largest convex geometry extending L.
- the paper "Join-semidistributive lattices and convex geometries" by KA, V.Gorbunov, V. Tumanov, was submitted to Advances in mathematics in 2001;

Convex geometries

- Ralph McKenzie's conference, Vanderbilt, 2002;
- JB suggested a closure operator on $J i(L)$ of a finite join-semidistributive lattice L so that produced lattice of closed sets would be the largest convex geometry extending L.
- the paper "Join-semidistributive lattices and convex geometries" by KA, V.Gorbunov, V. Tumanov, was submitted to Advances in mathematics in 2001;
- the handling editor at Advances was Bjarni Jónsson;

Convex geometries

- Ralph McKenzie's conference, Vanderbilt, 2002;
- JB suggested a closure operator on $J i(L)$ of a finite join-semidistributive lattice L so that produced lattice of closed sets would be the largest convex geometry extending L.
- the paper "Join-semidistributive lattices and convex geometries" by KA, V.Gorbunov, V. Tumanov, was submitted to Advances in mathematics in 2001;
- the handling editor at Advances was Bjarni Jónsson;
- most likely reviewer of the paper was ...

Largest extension of a finite convex geometry

Definition

A closure system (X, ϕ) satisfies the anti-exchange property if for all $x \neq y$ and all closed sets $Y \subseteq X$,

$$
\begin{equation*}
x \in \phi(Y \cup\{z\}) \text { and } x \neq z, x \notin Y \text { imply that } z \notin \phi(Y \cup\{x\}) . \tag{1}
\end{equation*}
$$

Definition

A closure system that satisfies the anti-exchange property is called a convex geometry.

Example

If A is an algebraic lattice and $S_{p}: 2^{A} \rightarrow 2^{A}$ is an operator generating a smallest algebraic subset for any input $Y \subseteq A$, then $\left(A, S_{p}\right)$ is a convex geometry.

Largest extension of a finite convex geometry

Definition

A closure space (X, Δ) is a (strong) extension of (X, ϕ), if $C l(X, \phi)$ is a sublattice of $C I(X, \Delta)$.

Theorem (KA and JB Nation, AU 2005)

Every finite join semidsitributive lattice has a largest join semidistributive extension. This largest extension is atomistic, and hence the closure lattice of a convex geometry.

Fast time forward: H. Yoshikawa, H. Hirai and K. Makino, in "A representation of antimatroids by Horn rules in its application to educational systems", Journal of Math. Psychology, 2017:

Problem

Find effective algorithmic solution to obtain largest antimatroid extension given a set of rules for an antimatroid.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

Hawai'i 2004

Lemma (R. Freese and J.B.Nation, Pacific J. Math. 73)

Let \mathbf{A} be a finite lower semilattice with greatest element 1_{A}, and let Sub $\wedge \mathbf{A}$ be the lattice of its subsemilattices containing 1_{A}. If \mathbf{S}_{V} is the upper semilattice induced on A by the order relation of \mathbf{A}, then $\mathbf{C o n} S_{V}$ is dually isomorphic to $\mathrm{Sub}_{\wedge} A$.

Hawai'i 2004 continued

Theorem (Fajtlowicz and J. Schmidt, 76)
Let \mathbf{A} be an algebraic lattice and \mathbf{S} denotes the join semilattice (with 0) of its compact elements. Then $\mathbf{S}_{\mathbf{p}}(\mathbf{A}) \cong{ }^{d}$ Con \mathbf{S}.

Congruence lattices of semilattices with operators

Fast time forward:
Theorem (J. Hyndman, J.B.Nation, J. Nishida, Studia Logica 16)
Let \mathbf{A} be an algebraic lattice with the monoid H of algebraic operators, and \mathbf{S} denotes the join semilattice (with 0) of its compact elements. Then there exists a monoid of endomorphisms of \mathbf{S} such that $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H) \cong{ }^{d} \mathbf{C o n}(\mathbf{S}, \vee, \mathbf{0}, G)$.

Congruence lattices of semilattices with operators

Fast time forward:

Theorem (J. Hyndman, J.B.Nation, J. Nishida, Studia Logica 16)

Let \mathbf{A} be an algebraic lattice with the monoid H of algebraic operators, and \mathbf{S} denotes the join semilattice (with 0) of its compact elements. Then there exists a monoid of endomorphisms of \mathbf{S} such that $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H) \cong{ }^{d} \mathbf{C o n}(\mathbf{S}, \vee, \mathbf{0}, G)$.

Back in Hawai'i, 2004:

Theorem

$\mathcal{L}_{q}(\mathcal{K}) \cong{ }^{d}$ Con $(\mathbf{S}, \vee, \mathbf{0}, G)$.

Congruence lattices of semilattices with operators

Fast time forward:

Theorem (J. Hyndman, J.B.Nation, J. Nishida, Studia Logica 16)

Let \mathbf{A} be an algebraic lattice with the monoid H of algebraic operators, and \mathbf{S} denotes the join semilattice (with 0) of its compact elements. Then there exists a monoid of endomorphisms of \mathbf{S} such that $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H) \cong{ }^{d}$ Con (S, $\left.\vee, \mathbf{0}, G\right)$.

Back in Hawai'i, 2004:

Theorem

$\mathcal{L}_{q}(\mathcal{K}) \cong{ }^{d}$ Con $(\mathbf{S}, \vee, \mathbf{0}, G)$.

Corollary (1) (KA and JB Nation, IJAC 12)

Equa-closure operator ν (or, in dual form, equa-interior operator) on a quasivariety lattice should satisfy property:

$$
\nu(x \wedge \tau(x \vee z)) \geq x \wedge \tau x
$$

Congruence lattices of semilattices with operators

Fast time forward:

Theorem (J. Hyndman, J.B.Nation, J. Nishida, Studia Logica 16)

Let \mathbf{A} be an algebraic lattice with the monoid H of algebraic operators, and \mathbf{S} denotes the join semilattice (with 0) of its compact elements. Then there exists a monoid of endomorphisms of \mathbf{S} such that $\mathbf{S}_{\mathbf{p}}(\mathbf{A}, H) \cong{ }^{d}$ Con (S, $\left.\vee, \mathbf{0}, G\right)$.

Back in Hawai'i, 2004:

Theorem

$\mathcal{L}_{q}(\mathcal{K}) \cong{ }^{d}$ Con $(\mathbf{S}, \vee, \mathbf{0}, G)$.

Corollary (1) (KA and JB Nation, IJAC 12)

Equa-closure operator ν (or, in dual form, equa-interior operator) on a quasivariety lattice should satisfy property:

$$
\nu(x \wedge \tau(x \vee z)) \geq x \wedge \tau x
$$

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

Representations

Corollary (2) (KA and JB Nation, IJAC 12)

The near-leaf lattice on the picture is isomorphic to a quasivariety lattice with equality, therefore finite lattice of quasivarieties are not necessarily lower bounded.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010 s
- Closure operators and implicational bases
- AAB workshops
- Little known

Quasivarieties without equality

Theorem (JB Nation, Notre Dame J. Formal Logic, 13)
If $(\mathbf{S}, \mathbf{0}, \vee, G)$ is a semilattice with operators, then $\mathbf{C o n}(\mathbf{S}, \vee, \mathbf{0}, G)$ is
isomorphic to a lattice of quasi-equational theories in the language that
may not contain equality.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

Pre-cursors

Fast time travel backward.
Theorem (V. Gorbunov and V. Tumanov, Algebra and Logic, 80)
For any algebraic lattice \mathbf{A}, the lattice $\mathbf{S}_{\mathbf{p}}(\mathbf{A})$ is isomorphic to lattices of quasivarieties of one-element structures in language with unary predicates.

Pre-cursors

Fast time travel backward.

Theorem (V. Gorbunov and V. Tumanov, Algebra and Logic, 80)

For any algebraic lattice \mathbf{A}, the lattice $\mathbf{S}_{\mathbf{p}}(\mathbf{A})$ is isomorphic to lattices of quasivarieties of one-element structures in language with unary predicates.

Definition (JB Nation, AU 1990)

OD-graph of finite lattice \mathbf{L} is a structure (J, \leq, \mathcal{C}), where $J=J i(L)$, $\mathcal{C}: J \rightarrow 2^{2^{J}}$ and $\mathcal{C}(j)=\{C: C$ is a minimal cover of $j\}$.

Lemma

Every finite lattice \mathbf{L} is isomorphic to the lattice of down-sets $X \subseteq J i(\mathbf{L})$ closed with respect to the following rule: if $C \in \mathcal{C}(j)$ and $C \subseteq X$ then $j \in X$.

Prompt

K. Bertet, B. Monjardet The multiple facets of canonical direct implicational basis, TCS, 2010.

Theorem (KA, JB Nation, R. Rand, DAM 2013)

- OD-graph is an impicational basis (the D-basis) of a closure system associated with a finite lattice.
- The D-basis is a subset of a canonical direct basis.
- The D-basis is ordered direct (allows fast computation of closures).

Prompt

K. Bertet, B. Monjardet The multiple facets of canonical direct implicational basis, TCS, 2010.

Theorem (KA, JB Nation, R. Rand, DAM 2013)

- OD-graph is an impicational basis (the D-basis) of a closure system associated with a finite lattice.
- The D-basis is a subset of a canonical direct basis.
- The D-basis is ordered direct (allows fast computation of closures).

Theorem (KA and JB Nation, DAM 2014)

There exists a polynomial algorithm that, given canonical basis of Guigue-Duquenne, identifies whether the closure system defined by the basis does not have D-cycles.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

AAB workshops

Starting in 2010, 4 workshops were organized on the topic of overlaps between lattice theory, Horn logic, Horn Boolean functions, closure operators and directed hypergraphs. The largest one ran in Dagstuhl in 2014.

Applications

Theorem (KA and JB Nation, TCS 2017)

The D-basis of Galois lattice associated with a binary table can be computed by polynomial reduction to hypergraph dualization problem.

Lemma (Freese, Jezek, Nation, Free Lattices, Chapter 11)

For distinct join irreducible elements a, b of a finite lattice $a D b$ iff $a \nearrow q \searrow b$ for some meet irreducible element q.

Outline

(1) From Novosibirsk to Nashville

- Novosibirsk 1989
- 90s
- Nashville, 2002
(2) Hawai'i and quasivarieties
- 2004
- Representations
- Without equality
(3) 2010s
- Closure operators and implicational bases
- AAB workshops
- Little known

Little known Nation

- In October 2017 JB gave a public lecture at Hofstra with the title "What mathematics can tell us about cancer".

Little known Nation

- In October 2017 JB gave a public lecture at Hofstra with the title "What mathematics can tell us about cancer".
- He is a creator of LUST algorithm to identify common metagenes across 16 types of cancer.

Little known Nation

- In October 2017 JB gave a public lecture at Hofstra with the title "What mathematics can tell us about cancer".
- He is a creator of LUST algorithm to identify common metagenes across 16 types of cancer.
- Dbasis algorithm is implemented in code for retrieval of implicational basis from large tables (first testing was done in Kazakhstan).

Little known continued

"Measuring the implications of the D-basis in analysis of data in biomedical studies" (Proceedings of ICFCA, 2015) was done in collaboration of Cancer center of UofH and Biology department of University in Astana, Kazakhstan;

More of little known

The new paper on retrieval of rules of high confidence is just accepted at Data Mining conference DTMN in Sydney (July 2018). Co-authors: Oren Segal (Hofstra, CS), Justin Cabot-Miller (undegrad math/CS major), Anuar Sharafudinov (AILabs in Kazakhstan).

More known

JB and Jen Hyndman are about to publish their monograph:
The lattice of subquasivarieties of a locally finite quasivariety

More known

JB had been working and continues to work on

- projective planes (check one of next talks today);
- whales;
- reflection group codes and their decoding;
- inherently non-finitely based varieties;
- infinite convex geometries;
- long distance running;
- volunteering for a soccer league;
- playing a trumpet on important occasions...

Hawaiian nation of universal algebraists

Hawaiian nation of universal algebraists

MAHALO!

