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Splitting algebras

1 if K is a variety and LK is its lattices of subvarieties, a
splitting pair in LV is a pair of subvarieties (W,V) such that
for every K′ ⊆ K either V ⊆ K′ or K′ ⊆W;

2 we can prove: W is one-based and V is generated by a single
�nitely generated subdirectly irreducible algebra A;

3 if K has the �nite model property, then A must be �nite;

4 if K is also congruence distributive, then A is uniquely
determined (by Jònsson's Lemma);

5 if for A ∈ K there exists a WA ⊆ K such that (WA,VVV (A)) is
a splitting pair, then A is splitting algebra in K; clearly A
can be assumed to be s.i. and �nitely generated.

6 if A is splitting then any equation axiomatizing WA is the
splitting equation of A and WA is the conjugate variety of
A.
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Lattices and Heyting algebras

The theorem hinted in the previous slide does not say that if
the hypotheses hold, then there is a splitting algebra in V; nor
its proof produces an e�ective way of determining the splitting
equation of A, in case it is splitting. Both the existence and
the splitting equation require ad hoc arguments.

R. McKenzie [1972] did exactly that, characterizing the
splitting algebras in the variety of all lattices (that are
congruence distributive and have the �nite model property)
and also giving an algorithm to �nd their splitting equations.

Almost at the same time in a di�erent part of the world V.
Jankov was studying intermediate logics, i.e. subvarieties of
the variety HA of Heyting algebras.
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Jankov's result

Jankov found a way to associate to any �nite subdirectly irreducible
Heyting algebra A a term JA (called the Jankov formula) and was
able to prove essentially that:

• the largest variety of Heyting algebras not containing VVV (A) is
axiomatized by JA ≈ 1;

• hence any �nite subdirectly irreducible Heyting algebra is
splitting in HA with splitting equation JA ≈ 1.
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Subdirectly irreducible Heyting algebras

H

⊕

2

=

H⊕ 2

1

The ordinal sum.
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The statement

Of course now we know that any �nite subdirectly irreducible
Heyting algebra is splitting just because the variety of Heyting
algebras has EDPC (and the �nite model property);

However let's state Jankov's result in a naive fashion:

Theorem

A �nite Heyting algebra is splitting if and only if it is of the form

H⊕ 2 for some Heyting algebra H.

This is exactly the statement we would like to generalize.
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The ingredients

To generalize the theorem properly we need three ingredients:

a proper context;

a good concept of ordinal sum in the context;

some knowledge of the subdirectly irreducible algebras in the
context.
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The context: FL-algebras and residuated semilattices

An algebra A = 〈A,∨,∧, ·,→,←, 0, 1〉 is an FL-algebra if
1 〈A,∨,∧〉 is a lattice;

2 〈A, ·, 1〉 is a monoid;

3 → and ← are the left and right residuation w.r.t. ·;
4 0 is an element of A.

A residuated lattice is a subreduct of an FL-algebra to the
type without 0.
A residuated semilattice is a subreduct of an FL-algebra to
the type without 0 and ∨.
An FL-algebra or a residuated (semi)lattice A is commutative

it satis�es xy ≈ yx , integral if it satis�es x ≤ 1 and
zero-bounded if it satis�es 0 ≤ x ; they all form varieties.
By FLew we denote the variety of commutative, integral and
zero-bounded FL-algebras.
The variety of FL-algebras and the variety of residuated
semilattices are congruence distributive (the �rst is obvious,
the second less obvious but still true).
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Ordinal sums: semilattices

Let F,S be two integral residuated semilattices. The ordinal sum
F⊕ S is F ∪ S with the operations de�ned in the following way. If
x , y both belong to F or S then the operations are de�ned as those
in each algebra; otherwise

x → y = x ← y =

{
y if x ∈ S and y ∈ F

1 if x ∈ F \ {1} and y ∈ S

x · y =

{
y if x ∈ S and y ∈ F{1}
x if x ∈ F \ {1} and y ∈ S

x ∧ y =

{
y if x ∈ F and y ∈ S \ {1}
x if x ∈ S \ {1} and y ∈ F

It is easily seen that F⊕ S is always a residuated semilattice and
the ordering is the one obtained stacking the two semilattices one
over the other.
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Ordinal sums: lattices

1 The ordering that results in stacking two integral residuated
lattices one over another might not be a lattice ordering.

2 If 1 is not join irreducible in A and B has no minimum, then
for a, b ∈ A with a ∨A b = 1, then a ∨ b simply does not exist,
since the upper bounds of a, b are all the elements of B and B
has no minimum.

3 So we de�ne it only when either if 1 is join irreducible in A or
B has a minimum; in the �rst case the join in A⊕ B is is the
one induced by the ordering.

4 In the second case if m is the minimum of B

x ∨ y =





x ∨B y if x , y ∈ B

x ∨A y if x , y ∈ A and x ∨ y < 1

m if x , y ∈ A and x ∨ y = 1

x if x ∈ B and y ∈ A

y if x ∈ A and y ∈ B;
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A look at Jankov's argument

1 If S is an integral residuated semilattice and pi (x), i = i , . . . , n
are residuated semilattices terms , then the equation∧n

i=1
pi (x) ≈ 1 is true in a model if and only if all the

equations pi (x) ≈ 1 are true in the model.

2 Since the equality relation is term de�nable we can encode
information about S into a term.

3 Any term encoding information about S is called a diagram.
If S is �nite, a Jankov formula for S is simply any equation in
the variables XS = {xs : s ∈ S}, involving diagrams of S.

4 If S is a �nite subdirectly irreducible residuated semilattice
with monolith µ then 1/µ has a minimum denoted by ?.

5 If S = {a1, . . . , an, ?, 1} the t-diagram) for S is

T (XS) =
∧
{xu∗v ↔ xu∗xv : u, v ∈ S , ∗ ∈ {∨,∧,→,←, ·, 1}}.

Observe that T (XS) encodes all the operation tables of S and
T (a1, . . . , an, ?, 1) = 1 by design.
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Theorem

Let S be a �nite subdirectly irreducible integral residuated

semilattice S = {a1, . . . , an, ?, 1} and let B any integral residuated

semilattice. Then S ∈ IIISSS(B) if and only if there are

b1, . . . , bn, b? ∈ B with b? 6= 1 and

T (b1, . . . , bn, b?, 1) = 1.
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1 The above lemma holds for integral �nite subdirectly
irreducible FL-algebras by rede�ning the t-diagram accordingly.

2 If S is a �nite subdirectly irreducible integral residuated
semilattice and JT (XS) = T (XS)→ x?, then JT (XS) ≈ 1 is a
Jankov formula.

3 Next if S ∈ VVV (B), then B 6� JT (XS) ≈ 1, since S does not.

4 So if S is a �nite subdirectly irreducible algebra, S ∈ U and W

is the subvariety of U axiomatized by JT (XS) ≈ 1, then
S /∈W and W ⊆WU

S
.

5 Hence if W = WU
S
, then S is splitting in U.

6 This is exactly the way V. Jankov showed that any �nite
subdirectly irreducible Heyting algebra is splitting in any
subvariety of Heyting algebras to which it belongs, but there
are many cases in which W 6= WU

S
.

7 For instance T. Kowalski and H. Ono [2000] showed that if
U = FLew , then W = WU

S
if and only if S = 2.
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3 Next if S ∈ VVV (B), then B 6� JT (XS) ≈ 1, since S does not.

4 So if S is a �nite subdirectly irreducible algebra, S ∈ U and W

is the subvariety of U axiomatized by JT (XS) ≈ 1, then
S /∈W and W ⊆WU

S
.

5 Hence if W = WU
S
, then S is splitting in U.

6 This is exactly the way V. Jankov showed that any �nite
subdirectly irreducible Heyting algebra is splitting in any
subvariety of Heyting algebras to which it belongs, but there
are many cases in which W 6= WU

S
.

7 For instance T. Kowalski and H. Ono [2000] showed that if
U = FLew , then W = WU

S
if and only if S = 2.
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GBL-algebras

An FL-algebra or a residuated semilattice S is divisible if the
underlying ordering is the inverse divisibility ordering, i.e. all
a, b ∈ S

a ≤ b if and only if ∃c , d with a = cb = bd .

A divisible FL-algebra is called a a GBL-algebra.

The variety of integral, zero-bounded and commutative
GBL-algebras is denoted by GBLew .

An integral, commutative and divisible residuated semilattice is
called a hoop; the variety of hoops is denoted by H.

Both H and GBLew have the �nite model property.
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Subdirecly irreducible GBL-algebras and hoops

A Wajsberg hoop is a hoop satisfying Tanaka's equation

(x → y)→ y ≈ (y → x)→ x .

Any subdirectly irreducible hoop is of the form F⊕ S where S
is a totally ordered Wajsberg hoop [Blok-Ferreirim, 2000]

Any subdirectly irreducible algebra in GBLew is of the form
F⊕ S, where S is a totally ordered Wajsberg hoop
[Jipsen-Montagna, 2008].
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The new Jankov formula

We want to use a Jankov-like argument but we already know
that the Jankov formula T (XA)→ x? ≈ 1 is not going to be
enough: we need a more re�ned formula.

Consider the following diagram:

D(XA) =
n∧

i ,j=1

((xai ↔ xaj )→ x?) ∧
n∧

i=1

(xai → x?) ∧ (x? → x2? ).

In this diagram we encode the fact that ? is the coatom, that
it is idempotent and that all the ai are distinct.

De�ne
Ĵ(XA) = D(XA)→ (T (XA)→ x?);

the Jankov formula we are going to use is Ĵ(XA) ≈ 1.
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The rationale: the original request that T (XA)→ x? ≈ 1 was
too strong, so we have to settle for less. Hence we ask that
T (XA)→ x? be large enough to be above D(XA).

Roughly speaking we consider the algebras in GBLew that
have the following property: if they are generated by the same
number of elements as A and they have a unique maximal
idempotent coatom, then not all the operation tables are
encoded by the t-diagram of A. Note that A 6� Ĵ(XA) ≈ 1 by
design.
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The results

Theorem

A subdirectly irreducible algebra in GBLew is splitting if and only if

it is F⊕ 2 for some �nite F ∈ GBLew .

Theorem

A subdirectly irreducible hoop A is splitting in the variety of hoops

if and only if A = F⊕ 2 for some �nite hoop F.
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Advanced results

With suitable modi�cations we can extend the results to many
subvarieties of GBLew and H with the �nite model property;

We can described all the �nite splitting algebras in su�ciently
large normal varieties of integral GBL-algebras. (Normality is a
weakening of commutativity.).

We can specialize our results to varieties generated by totally
ordered integral residuated semilattices or FL-algebras; such
varieties are called representable and they have several
properties that can be used to facilitate our investigation.

Representable GBLew algebras are called BL-algebras and
representable hoops are called basic hoops.

They are both known to have the �nite model property [?] and
their splitting algebras can be completely characterized.

We can also try to dispose of divisibility altogether, and this is
the subject of our ongoing research.
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