Multiplayer Rock-Paper-Scissors

Charlotte Aten

University of Rochester

2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We will view the game of RPS as a magma. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where f(x, y) is the winning item among $\{x, y\}$.

	r	р	5
r	r	р	r
р	р	р	5
5	r	5	5

A selection game is a game consisting of a collection of items A, from which a fixed number of players n each choose one, resulting in a tuple $a \in A^n$, following which the round's winners are those who chose f(a) for some fixed rule $f: A^n \to A$. RPS is a selection game, and we can identify each such game with an *n*-ary magma $\mathbf{A} := (A, f)$.

Properties of RPS

The game RPS is

- conservative,
- essentially polyadic,
- 3 strongly fair, and
- 4 nondegenerate.

These are the properties we want for a multiplayer game, as well.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We say that an operation $f: A^n \to A$ is *conservative* when for any $a_1, \ldots, a_n \in A$ we have that $f(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\}$. We say that **A** is conservative when each round has at least one winning player.

We say that an operation $f: A^n \to A$ is essentially polyadic when there exists some $g: Sb(A) \to A$ such that for any $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$. We say that **A** is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item.

Let A_k denote the members of A^n which have k distinct components for some $k \in \mathbb{N}$. We say that f is *strongly fair* when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$. We say that **A** is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.

We say that f is *nondegenerate* when |A| > n. In the case that $|A| \le n$ we have that all members of $A_{|A|}$ have the same set of components. If **A** is essentially polyadic with $|A| \le n$ it is impossible for **A** to be strongly fair unless |A| = 1.

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

	r	n	c	147		r	р	5	V	1
	1	P	3	~~~	r	r	р	r	V	r
r	r	р	r	W			٢	•	•	΄,
n	n	'n	c	n	р	р	р	S	р	1
Ρ		Ρ	3	Ρ	S	r	S	S	V	S
S	r	S	S	W	-	-	-	-	-	-
147	14/	n	147	147	v	V	р	V	V	1
VV	<i>w p w</i>	vv	vv	1	r	1	5	1	1	

The only "valid" RPS variants for two players use an odd number of items.

Theorem

Let **A** be a selection game with n = 2 which is essentially polyadic, strongly fair, and nondegenerate and let m := |A|. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

RPS Magmas

Definition (RPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS magma. When \mathbf{A} is an *n*-magma of order *m* with these properties we say that \mathbf{A} is an RPS(m, n) magma. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

Theorem

Let **A** be a selection game with n players and m items which is essentially polyadic, strongly fair, and nondegenerate. For all primes $p \le n$ we have that $p \nmid m$. Conversely, for each pair (m, n)with $m \ne 1$ such that for all primes $p \le n$ we have that $p \nmid m$ there exists such a selection game.

Since **A** is nondegenerate we must have that m > n. Since **A** is strongly fair we must have that $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$ for all $k \in \mathbb{N}$. As the *m* distinct sets $f^{-1}(a) \cap A_k$ for $a \in A$ partition A_k and are all the same size we require that $m \mid |A_k|$. When k > n we have that $A_k = \emptyset$ and obtain no constraint on *m*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When $k \leq n$ we have that A_k is nonempty. As we take **A** to be essentially polyadic we have that f(x) = f(y) for all $x, y \in A_k$ such that $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$. Let B_k denote the collection of unordered sets of k distinct elements of A. Note that the size of the collection of all members $x \in B_k$ such that $\{x_1, \ldots, x_n\} = \{z_1, \ldots, z_k\}$ for distinct $z_i \in A$ does not depend on the choice of distinct z_i . This implies that for a fixed $k \leq n$ each of the m items must be the winner among the same number of unordered sets of k distinct elements in A. We have that $|B_k| = {m \choose k}$ so we require that $m \mid |B_k| = {m \choose k}$ for all $k \leq n$.

Proof (Forward Direction)

Let

$$d(m,n) := \gcd\left(\left\{ \left(egin{smallmatrix} m \\ k \end{array} \right) \ \middle| \ 1 \leq k \leq n
ight\}
ight)$$

Since $m \mid \binom{m}{k}$ for all $k \leq n$ we must have that $m \mid d(m, n)$. Joris, Oestreicher, and Steinig showed that when m > n we have

$$d(m,n) = \frac{m}{\operatorname{lcm}(\{ k^{\varepsilon_k(m)} \mid 1 \le k \le n \})}$$

where $\varepsilon_k(m) = 1$ when $k \mid m$ and $\varepsilon_k(m) = 0$ otherwise. Since we have that $m \mid d(m, n)$ and $d(m, n) \mid m$ it must be that m = d(m, n) and hence

$$\operatorname{\mathsf{lcm}}\left(\left\{\left.k^{\varepsilon_k(m)}\right|\,1\leq k\leq n\right\}\right)=1.$$

This implies that $\varepsilon_k(m) = 0$ for all $2 \le k \le n$. That is, no k between 2 and n inclusive divides m. This is equivalent to having that no prime $p \le n$ divides m, as desired.

Our numerical condition also allows us to fix the number of items m and ask how many players n may use that number of items.

Theorem

Given a fixed m there exists an RPS(m, n) magma if and only if n < t(m) where t(m) is the least prime dividing m.

The class RPS is not closed under taking subalgebras. The French variant is a subalgebra of Rock-Paper-Scissors-Spock-Lizard. The class of RPS magmas is as far from being closed under products as possible.

Theorem

Let **A** and **B** be nontrivial RPS n-magmas with n > 1. The magma $\mathbf{A} \times \mathbf{B}$ is not an RPS magma.

This can be done by showing that the product ${\bf A} \times {\bf B}$ is not conservative.

Current Directions

- **1** Geometric interpretation as in tournaments.
- 2 Asymptotics on conservativity.
- Properties of clones. Note the connection with cyclic/symmetric groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you.

<□ > < @ > < E > < E > E のQ @