Multiplayer Rock-Paper-Scissors

Charlotte Aten

University of Rochester

2018

RPS as a Magma

We will view the game of RPS as a magma. We let $A:=\{r, p, s\}$ and define a binary operation $f: A^{2} \rightarrow A$ where $f(x, y)$ is the winning item among $\{x, y\}$.

	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s

Selection Games

A selection game is a game consisting of a collection of items A, from which a fixed number of players n each choose one, resulting in a tuple $a \in A^{n}$, following which the round's winners are those who chose $f(a)$ for some fixed rule $f: A^{n} \rightarrow A$. RPS is a selection game, and we can identify each such game with an n-ary magma $\mathbf{A}:=(A, f)$.

Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.
These are the properties we want for a multiplayer game, as well.

Properties of RPS: Conservativity

We say that an operation $f: A^{n} \rightarrow A$ is conservative when for any $a_{1}, \ldots, a_{n} \in A$ we have that $f\left(a_{1}, \ldots, a_{n}\right) \in\left\{a_{1}, \ldots, a_{n}\right\}$. We say that \mathbf{A} is conservative when each round has at least one winning player.

Properties of RPS: Essential Polyadicity

We say that an operation $f: A^{n} \rightarrow A$ is essentially polyadic when there exists some $g: \operatorname{Sb}(A) \rightarrow A$ such that for any $a_{1}, \ldots, a_{n} \in A$ we have $f\left(a_{1}, \ldots, a_{n}\right)=g\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$. We say that \mathbf{A} is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item.

Properties of RPS: Strong Fairness

Let A_{k} denote the members of A^{n} which have k distinct components for some $k \in \mathbb{N}$. We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have
$\left|f^{-1}(a) \cap A_{k}\right|=\left|f^{-1}(b) \cap A_{k}\right|$. We say that \mathbf{A} is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.

Properties of RPS: Nondegeneracy

We say that f is nondegenerate when $|A|>n$. In the case that $|A| \leq n$ we have that all members of $A_{|A|}$ have the same set of components. If \mathbf{A} is essentially polyadic with $|A| \leq n$ it is impossible for \mathbf{A} to be strongly fair unless $|A|=1$.

Variants with More Items

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

	r	p	s	w		r	p	s	v	l
	r	p	r	w	r	r	p	r	v	r
p	p	p	s	p	p	p	p	s	p	l
s	r	s	s	w	s	r	s	s	v	s
w	w	p	w	w	v	v	p	v	v	l
	l	r	l	s	l	l				

Result for Two-Player Games

The only "valid" RPS variants for two players use an odd number of items.

Theorem

Let \mathbf{A} be a selection game with $n=2$ which is essentially polyadic, strongly fair, and nondegenerate and let $m:=|A|$. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

RPS Magmas

Definition (RPS magma)

Let $\mathbf{A}:=(A, f)$ be an n-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS magma. When \mathbf{A} is an n-magma of order m with these properties we say that \mathbf{A} is an $\operatorname{RPS}(m, n)$ magma. We also use RPS and $\operatorname{RPS}(m, n)$ to indicate the classes of such magmas.

Result for Multiplayer Games

Theorem

Let A be a selection game with n players and m items which is essentially polyadic, strongly fair, and nondegenerate. For all primes $p \leq n$ we have that $p \nmid m$. Conversely, for each pair (m, n) with $m \neq 1$ such that for all primes $p \leq n$ we have that $p \nmid m$ there exists such a selection game.

Proof (Forward Direction)

Since \mathbf{A} is nondegenerate we must have that $m>n$.
Since \mathbf{A} is strongly fair we must have that
$\left|f^{-1}(a) \cap A_{k}\right|=\left|f^{-1}(b) \cap A_{k}\right|$ for all $k \in \mathbb{N}$. As the m distinct sets $f^{-1}(a) \cap A_{k}$ for $a \in A$ partition A_{k} and are all the same size we require that $m\left|\left|A_{k}\right|\right.$. When $k>n$ we have that $A_{k}=\varnothing$ and obtain no constraint on m.

Proof (Forward Direction)

When $k \leq n$ we have that A_{k} is nonempty. As we take \mathbf{A} to be essentially polyadic we have that $f(x)=f(y)$ for all $x, y \in A_{k}$ such that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$. Let B_{k} denote the collection of unordered sets of k distinct elements of A. Note that the size of the collection of all members $x \in B_{k}$ such that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{z_{1}, \ldots, z_{k}\right\}$ for distinct $z_{i} \in A$ does not depend on the choice of distinct z_{i}. This implies that for a fixed $k \leq n$ each of the m items must be the winner among the same number of unordered sets of k distinct elements in A. We have that $\left|B_{k}\right|=\binom{m}{k}$ so we require that $m\left|\left|B_{k}\right|=\binom{m}{k}\right.$ for all $k \leq n$.

Proof (Forward Direction)

Let

$$
d(m, n):=\operatorname{gcd}\left(\left\{\left.\binom{m}{k} \right\rvert\, 1 \leq k \leq n\right\}\right)
$$

Since $m \left\lvert\,\binom{ m}{k}\right.$ for all $k \leq n$ we must have that $m \mid d(m, n)$. Joris, Oestreicher, and Steinig showed that when $m>n$ we have

$$
d(m, n)=\frac{m}{\operatorname{lcm}\left(\left\{k^{\varepsilon_{k}(m)} \mid 1 \leq k \leq n\right\}\right)}
$$

where $\varepsilon_{k}(m)=1$ when $k \mid m$ and $\varepsilon_{k}(m)=0$ otherwise. Since we have that $m \mid d(m, n)$ and $d(m, n) \mid m$ it must be that $m=d(m, n)$ and hence

$$
\operatorname{Icm}\left(\left\{k^{\varepsilon_{k}(m)} \mid 1 \leq k \leq n\right\}\right)=1
$$

This implies that $\varepsilon_{k}(m)=0$ for all $2 \leq k \leq n$. That is, no k between 2 and n inclusive divides m. This is equivalent to having that no prime $p \leq n$ divides m, as desired.

Items as a Function of Players

Our numerical condition also allows us to fix the number of items m and ask how many players n may use that number of items.

Theorem

Given a fixed m there exists an $\operatorname{RPS}(m, n)$ magma if and only if $n<t(m)$ where $t(m)$ is the least prime dividing m.

Algebraic Properties of RPS Magmas

The class RPS is not closed under taking subalgebras. The French variant is a subalgebra of Rock-Paper-Scissors-Spock-Lizard. The class of RPS magmas is as far from being closed under products as possible.

Theorem

Let \mathbf{A} and \mathbf{B} be nontrivial RPS n-magmas with $n>1$. The magma $\mathbf{A} \times \mathbf{B}$ is not an RPS magma.

This can be done by showing that the product $\mathbf{A} \times \mathbf{B}$ is not conservative.

Current Directions

1 Geometric interpretation as in tournaments.
2 Asymptotics on conservativity.
3 Properties of clones. Note the connection with cyclic/symmetric groups.

Thank you.

