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D = ISP(D), where

D = 〈{0,1};∨,∧,0,1〉 d 0

d 1 IScP+(D), where

D = 〈{0,1};6,T〉 d 0

d 1



Natural dualities: alter egos

Generalizing this and many other examples, we start with a
finite algebra M and wish to find a dual category for the
quasivariety A := ISP(M).

An alter ego of a finite algebra

A finitary structure M = 〈M;G,H,R,T〉 is an alter ego of M if

I G is a set of compatible operations on M,
I H is a set of compatible partial operations on M,
I R is a set of compatible relations on M,
I T is the discrete topology on M.

An alter ego of M is often denoted by M∼ instead of M.



Natural dualities: categories and functors
Fix a finite algebra M and let M = 〈M;G,H,R,T〉 be an alter
ego of M.

The categories A and X

I Define A := ISP(M): the algebraic category of interest.

I Define X := IScP+(M): the potential dual category for A.

The contravariant functors D and E
I There are natural hom-functors D : A→ X and E : X→ A.

I For each algebra A in A,

D(A) = hom(A,M) 6 MA.

I For each structure X in X,

E(X) = hom(X,M) 6 MX .
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Natural dualities: embeddings

Natural embeddings

For every A ∈ A and X ∈ X, there are naturally defined
embeddings

eA : A→ ED(A) and εX : X→ DE(X).

These embeddings yield natural transformations

e : idA → ED and ε : idX → DE ,

and 〈D,E ,e, ε〉 is a dual adjunction between A and X.
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Duality

If eA : A→ ED(A) is an isomorphism, for all A in A, then we
say that M yields a duality on A (or that M dualises M).

If some alter ego dualises M, then we say that M is dualisable.
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Full duality

If, in addition, εX : X→ DE(X) is an isomorphism, for all X in X,
then we say that M yields a full duality on A (or that M fully
dualises M).

If some alter ego fully dualises M, then we say that M is
fully dualisable.



Full duality

If, in addition, εX : X→ DE(X) is an isomorphism, for all X in X,
then we say that M yields a full duality on A (or that M fully
dualises M).

If some alter ego fully dualises M, then we say that M is
fully dualisable.



Examples

I Our original example — Priestley duality — is an example
of a full duality.

I Every finite algebra with an NU term is fully dualisable.
(Davey, Werner 80 and Clark, Davey 95)

I The unary algebra

is dualisable, but not fully dualisable.
(Hyndman, Willard 00)

I The two-element implication algebra I := 〈{0,1};→〉 is not
dualisable.
(Davey, Werner 80)
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Examples
Let 6 be an order on a finite set M and let M = 〈M; Pol(6)〉 be
the corresponding order-primal algebra.

I M is dualisable if and only if Pol(6) contains an NU
operation.
(Davey, Quackenbush, Schweigert 90 and

Davey, Heindorf, McKenzie 95)

I If 〈M;6〉 is a fence, then Pol(6) contains a majority
operation and hence M = 〈M; Pol(6)〉 is dualisable.

I If 〈M;6〉 is a crown, then Pol(6) contains no NU operation
(Demetrovics, Rónyai 89)
and hence M = 〈M; Pol(6)〉 is not dualisable.

I It was this final example that led to Paper 1 co-authored
with JB.
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Distance in ordered sets – crowns

C2

d(b,b′) = 2

b b′

C3

d(b,b′) = 3

b

b′
C4

d(b,b′) = 4

b b′



Antipodes



The definition of a braid

Let P be a connected ordered set with at least three elements.

I Define the distance function d : P2 → N by

d(a,b) = number of edges in a min-sized fence from a to b.

I The reach of P is the ‘maximum’ distance
between elements:

r(P) := sup{d(a,b) | a,b ∈ P }.

I Two elements b,b′ of P are antipodal if d(b,b′) = r(P).

I The ordered set P is a braid if every element of P has a
unique antipodal element in P.



Examples of braids

0. The crown Cn is a braid of reach n. C3

1. For a chain C, define the tower TC to be the linear sum
over C of 2-element antichains.

T2 = C2 T3

b b′

The towers TC are the only braids of reach 2.



Examples of braids, continued

2. Let S be a set with |S| > 3 and define P :=℘(S) \ {∅,S}.

{1}

{2,3}

{1}

{2,3,4}

Then 〈P;⊆〉 is a braid of reach 3, where a′ = S \ a.



Examples of braids – cyclone (= chain link) fences



Examples of braids – cyclone fences

3.

F3,3

a

b

a′

b′

F3,4
a

b′

a′

b

Fh,r has height h, reach r > 3, and width h(r − 2) + 2.



The pathological behaviour of braids

Braids-are-Pathological Theorem

Let P be a finite braid and let f : Pn → P be order-preserving.
If f is idempotent,

( i.e., f (a,a, . . . ,a) = a, for all a ∈ P )

then f is a projection.

We say that P is idempotent trivial.



Why does this make braids pathological?

Examples
Familiar algebras have interesting idempotent operations.

I Groups, rings, vector spaces
Define f : G3 → G by f (x , y , z) = x − y + z.
Then f is idempotent, since f (x , x , x) = x , for all x ∈ G.

I Boolean algebras, lattices, semilattices
Define f : A2 → A by f (x , y) = x ∨ y .

Mal’cev conditions
I Many important Mal’cev conditions involve idempotent

operations; for example, congruence modularity.



Abelian groups of exponent 2
Let A = 〈A; +〉 be a non-trivial finite abelian group satisfying
x + x = 0, i.e., a group of the form (Z2)

m.
The polynomial operations of A are the maps f : An → A, for
some n > 1, given by

f (x1, . . . , xn) := xi1 + · · ·+ xit + c, for some c from A.

The collection A of all polynomial operations of A
(a) is a clone, i.e.,

I contains all the projections πi : An → A,
I is closed under composition,

(b) contains all the constant operations c : An → A,
(c) is 2-idempotent trivial, i.e, the only polynomials f : A2 → A

such that f (a,a) = a, for all a ∈ A, are the two projections;
(d) is not idempotent trivial, i.e, there is some f : An → A

such that f (a,a, . . . ,a) = a, for all a ∈ A, and f is not a
projection – take n = 3 and f (x1, x2, x3) := x1 + x2 + x3.
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A beautiful theorem

Abelian Group Theorem
Let C be a collection of operations on a finite set A.

Assume that C
(a) is a clone,
(b) contains all the constant operations c : An → A,
(c) is 2-idempotent trivial, and
(d) is not idempotent trivial.

Then there is a binary operation + in C such that
I 〈A; +〉 is an abelian group satisfying x + x = 0, and
I C is the collection of polynomial operations of 〈A; +〉.

In particular, |A| = 2m, for some m > 1.
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Abelian groups applied to braids
Corollary 1
Let P be a finite ordered set and assume that every idempotent
order-preserving function f : P2 → P is a projection. Then every
idempotent order-preserving function f : Pn → P is a projection,
for all n > 2.

That is, if P is 2-idempotent trivial, then it is idempotent trivial.

Braids-are-Pathological Theorem
Every finite braid is 2-idempotent trivial and therefore
idempotent trivial.

Corollary 2
If Arrow’s Theorem is true when there are only 2 voters, then it
it is true for any number n of voters, with n > 2.
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Open problems
Open Problem 1
Does every finite dualisable algebra generate a finitely based
variety?

I It was this problem that led to Paper 2 co-authored with Bill.
I Finiteness is necessary: the flat semilattice

F := 〈Z ∪ {⊥};∧, s, s−1,⊥〉 is self-dualising and generates
a non-finitely based variety.
(Davey, Jackson, Pitkethly, Talukder 07)

In 1976, Park conjectured that every finite algebra of finite
signature that generates a residually finite variety must be
finitely based.

Open Problem 2
Is every finite dualisable algebra of finite signature that
generates a residually finite variety necessarily finitely based?
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Graph algebras
Let G = 〈V ; r〉 be a graph, i.e., r is a symmetric binary relation
on the set V . The graph algebra of G is the algebra
A(G) := 〈V ∪̇ {0}; ·〉 where

u · v =

{
u if (u, v) ∈ r ,
0 otherwise.

Example
M A(M)

s
2

s
1

· 0 1 2
0 0 0 0
1 0 0 1
2 0 2 2

The groupoid A(M) was invented by V. L. Murskiı̌ in 1965.
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Graph algebras

Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is dualisable.
(ii) Each connected component of G is either complete (with

all loops), bipartite complete (with no loops), or a loose
vertex.

(iii) A(G) is finitely based.
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Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is not dualisable.

(ii) A(G) is inherently non-dualisable.
(iii) A(G) is inherently non-κ-dualisable for every cardinal κ.

(iv) At least one of M, L3, T, or P4 is an induced subgraph of G.
(v) A(G) is not finitely based.



Graph algebras

M
rr

L3

rrr
T

rr
r
J
JJ







P4

rrrr

Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is not dualisable.
(ii) A(G) is inherently non-dualisable.

(iii) A(G) is inherently non-κ-dualisable for every cardinal κ.

(iv) At least one of M, L3, T, or P4 is an induced subgraph of G.
(v) A(G) is not finitely based.



Graph algebras

M
rr

L3

rrr
T

rr
r
J
JJ







P4

rrrr

Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is not dualisable.
(ii) A(G) is inherently non-dualisable.

(iii) A(G) is inherently non-κ-dualisable for every cardinal κ.

(iv) At least one of M, L3, T, or P4 is an induced subgraph of G.
(v) A(G) is not finitely based.



Graph algebras

M
rr

L3

rrr
T

rr
r
J
JJ







P4

rrrr

Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is not dualisable.
(ii) A(G) is inherently non-dualisable.
(iii) A(G) is inherently non-κ-dualisable for every cardinal κ.
(iv) At least one of M, L3, T, or P4 is an induced subgraph of G.
(v) A(G) is not finitely based.



Graph algebras

M
rr

L3

rrr
T

rr
r
J
JJ







P4

rrrr

Theorem
The following statements are equivalent for any finite graph G.

(i) A(G) is not dualisable.
(ii) A(G) is inherently non-dualisable.
(iii) A(G) is inherently non-κ-dualisable for every cardinal κ.
(iv) At least one of M, L3, T, or P4 is an induced subgraph of G.
(v) A(G) is not finitely based.



Inherent non-dualisability

I The important concept of inherent non-dualisability was
introduced in this paper.
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A finite algebra M is inherently non-dualisable if every finite
algebra M′ that has M as a subalgebra is non-dualisable.

I The very useful Non-Dualisability Lemma and Inherent
Non-Dualisability Lemma also come from this paper.

The ND Lemma and the IND Lemma
Every known example of non-dualisability and inherent
non-dualisability can be proved by applying these lemmas.
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κ-dualisability

There is no need to insist that the signature of an alter ego M
be finitary.

Definition
A finite algebra M is κ-dualisable if Mκ := 〈M;Rκ,T〉 yields a
duality on ISP(M), where Rκ is the set of all less-than-κ-ary
compatible relations on M.

I Hence dualisability in the usual sense is precisely
ω-dualisability.

Open Problem 3
Is there a finite algebra that is κ-dualisable, for some
cardinal κ, but is not ω-dualisable?



The Hanf number for dualisability

I Lampe, McNulty and Willard (2001) proved that every
dualisable graph algebra is in fact fully dualisable.

I They introduced a very useful sufficient condition on a
finite algebra for a duality to be upgradable to a full duality:
having enough total algebraic operations.

I The also introduced the Hanf number for dualisability.

To each finite algebra A assign the smallest κ such that A is
κ-dualisable, if such κ exists, and∞ otherwise. The resulting
set of cardinals (plus∞) is the dualisability spectrum Sd.

I The Hanf number for dualisability is the smallest cardinal
strictly larger than every cardinal in Sd.
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The Hanf number for dualisability

Open Problem 4
Find the Hanf number for dualisability.

What is known?
I Pitkethly (2011) proved that the Hanf number for

dualisability is at least ℵ2.
I Pitkethly (2010) proved that the Hanf number for the class

of unary algebras is either ω or at least ℵ2.
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Lifting full dualities from the finite level



Standardness

I For clarity, given a finite structure M = 〈M;G,H,R〉, we
shall define

MT := 〈M;G,H,R,T〉

to be the corresponding discretely topologised structure.

I Let M be a finite algebra and assume that MT is an alter
ego that fully dualises M.

I The resulting dual equivalence between A := ISP(M) and
X := IScP+(MT) will be most useful if we have a syntactic
description of the dual category X, and preferably a
first-order description.

I The search for such descriptions led to the concept of
standardness.
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uH sentences
A universal Horn sentence (uH sentence, for short) in the
language (G,H,R) is a universally quantified formula of the
form

γ(~v),
∨k∨
i=1

¬αi(~v), or
(∧k∧

i=1

αi(~v)
)
→ γ(~v),

where γ(~v) and all αi(~v) are atomic formulas.

I For each finite structure M, we have

ISP+(M) = Mod(ThuH(M)).

I In general, IScP+(MT) ⊆ ModBT(ThuH(M)).

I We say that the structure M (and that the corresponding
topological structure MT) is standard if

IScP+(MT) = ModBT(ThuH(M)).
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Standard structures

We say that the structure M (and that the corresponding
topological structure MT) is standard if

IScP+(MT) = ModBT(ThuH(M)).

Examples

I The cyclic group Cn = 〈Cn; ·,−1 ,1〉 is standard:
I ISP+(Cn) is the class of abelian groups satisfying xn = 1,

and
I IScP+((Cn)T) is the class of Boolean topological abelian

groups satisfying xn = 1.

I The two-element chain 2 = 〈{0,1};6〉 is not standard:
I ISP+(2) is the class of ordered sets,

while
I IScP+(2T) is the class of Priestley spaces, which is not the

class of Boolean topological ordered sets (Stralka 80).



Standard structures

I After its introduction in 2003, standardness became a
study in its own right, independent of duality theory.

I In Paper 3, co-authored with Ralph, we found a surprising
connection between two purely algebraic conditions on a
finite algebra and the topological condition of
standardness.
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Finitely Determined Syntactic Congruences (FDSC)

Definition
I Let A be an algebra and let θ be an equivalence relation

on A.

I Let Tx be the set of all terms in the signature of A and
variables x , z1, z2, . . . , and let F ⊆ Tx . Define θF by
(a,b) ∈ θF if and only if

(∀f ∈ F )(∀~c ∈ A) (f A(a,~c), f A(b,~c)) ∈ θ.

I Syn(θ) := θTx is the largest congruence on A contained
in θ and is called the syntactic congruence of θ.

I A class K of algebras has Finitely Determined Syntactic
Congruences if there is a finite subset F of Tx such that
Syn(θ) := θF , for every equivalence relation θ on every
algebra in K.
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Term Finite Principal Congruences (TFPC)
Definition
I Let A be an algebra and let a,b ∈ A.

I Let F ⊆ Tx . Define CA
F (a,b) by (c,d) ∈ CA

F (a,b) if and only
if, for some choice of f1, . . . , fk ∈ F and ~e1, . . . , ~ek in A,

c = f A
1 (d1, ~e1)

f A
1 (d ′1, ~e1) = f A

2 (d2, ~e2)

...

f A
k (d ′k , ~ek ) = d ,

where {di ,d ′i } = {a,b}, for i = 1, . . . , k .
I Clearly, CA

F (a,b) ⊆ CgA(a,b).
I A class K of algebras has Term Finite Principal

Congruences if there is a finite subset F of Tx such that
CA

F (a,b) = CgA(a,b), for all a,b in every algebra A in K.
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FDSC = TFPC

Theorem
I Let A be an algebra and let F ⊆ Tx . Then F determines

syntactic congruences on A if and only if F determines
principal congruences on A.

I A class K of algebras has FDSC if and only if it has TFPC.
I If a variety has DPC, then it has TFPC and therefore has

FDSC.

Algebras with FDSC (= TFPC)

I Monoids: F = {z1xz2}.
I Every finitely generated variety of unary algebras.
I Groups: F = {z1xz2, z1x−1z2}.
I Semigroups: F = {x , z1x , xz2, z1xz2}
I Every finitely generated variety of lattices.
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FDSC = TFPC: examples continued

Algebras without FDSC (= TFPC)

I If a variety V contains an infinite subdirectly
irreducible algebra that has a compatible Boolean
topology, then V does not have FDSC.

I The variety of modular lattices, and therefore
the variety of lattices, does not have FDSC.
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I McKenzie’s algebra A(T ) generates a variety

without FDSC in the case that the Turing
machine T does not halt.
(The algebra Qω constructed by McKenzie
is SI and has a compatible Boolean topology.)

I In a recent preprint, Nurakunov, Stronkovski (2018) prove
that it is undecidable whether a finite algebra generates a
variety with FDSC. They use using the algebra A′(T )
constructed by Moore (2015).
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The surprising connection

FDSC-HSP Theorem
Let M = 〈M;G〉 be a finite algebra. Assume that
I HSP(M) has FDSC, and
I HSP(M) = ISP(M).

Then M is standard and hence IScP+(MT) = ModBT(ThuH(M)).
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Lifting full dualities from the finite level
I Let M be a finite algebra and let M = 〈M;G,R,T〉 be an

alter ego of M with G ∪ R finite (and H = ∅).
If M yields a full duality between Afin and Xfin, then
M yields a full duality between A and X. (Hofmann 02)

I Let 3 = 〈{0,a,1};∨,∧,0,1〉 be the three-element chain
and let 3 := 〈{0,a,1}; f ,g,h,T〉, where

I The alter ego 3
I yields a duality between D = ISP(3) and X := IScP+(3),
I yields a full duality between Dfin and Xfin,
I but does not yield a full duality between D and X.

(Davey, Haviar and Willard 05)



A further surprising connection
Full dualities and standardness

Davey, Pitkethly, Willard (2018) found a surprising connection
between full dualities and standardness.

Theorem
Let M be a finite algebra, let A = ISP(M) and let M1 and M2 be
alter egos of M. Assume that

I M1 yields a full duality between A and X1,
I M1 is standard, and
I M2 yields a full duality between Afin and (X2)fin.

Then M2 yields a full duality between A and X2 and M2 is
standard.

Quasi-primal algebras
Every alter ego of a quasi-primal algebra that yields a full
duality at the finite level yields a full duality and is standard.
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