A tale of three papers: a beautiful theorem, four open problems, a surprising connection

My joint work with Bill, JB and Ralph

Brian A. Davey Algebras and Lattices in Hawai'i May 23, 2018

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Outline

A survival guide to natural dualities

- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004)
 A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Bounded distributive lattices

Priestley spaces

Natural dualities: alter egos

Generalizing this and many other examples, we start with a finite algebra \mathbf{M} and wish to find a dual category for the quasivariety $\mathcal{A} := ISP(\mathbf{M})$.

An alter ego of a finite algebra

A finitary structure $\mathbb{M} = \langle M; G, H, R, T \rangle$ is an alter ego of **M** if

- ► *G* is a set of compatible operations on **M**,
- ► *H* is a set of compatible partial operations on **M**,
- ► *R* is a set of compatible relations on **M**,
- T is the discrete topology on *M*.

An alter ego of **M** is often denoted by \underline{M} instead of M.

Natural dualities: categories and functors

Fix a finite algebra **M** and let $\mathbb{M} = \langle M; G, H, R, T \rangle$ be an alter ego of **M**.

Natural dualities: categories and functors

Fix a finite algebra **M** and let $\mathbb{M} = \langle M; G, H, R, T \rangle$ be an alter ego of **M**.

The categories $\, {\cal A} \,$ and $\, {\cal X} \,$

- Define $\mathcal{A} := \mathsf{ISP}(\mathbf{M})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\mathbb{M})$: the potential dual category for \mathcal{A} .

Natural dualities: categories and functors

Fix a finite algebra **M** and let $\mathbb{M} = \langle M; G, H, R, T \rangle$ be an alter ego of **M**.

The categories $\,\mathcal{A}\,$ and $\,\mathfrak{X}\,$

- Define $\mathcal{A} := \mathsf{ISP}(\mathbf{M})$: the algebraic category of interest.
- Define $\mathfrak{X} := \mathsf{IS}_{\mathsf{c}}\mathsf{P}^+(\mathbb{M})$: the potential dual category for \mathcal{A} .

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \to \mathfrak{X}$ and $E: \mathfrak{X} \to \mathcal{A}$.
- For each algebra \mathbf{A} in \mathcal{A} ,

$$D(\mathbf{A}) = \operatorname{hom}(\mathbf{A}, \mathbf{M}) \leqslant \mathbb{M}^{A}.$$

For each structure **X** in \mathcal{X} ,

$$E(\mathbf{X}) = \operatorname{hom}(\mathbf{X}, \mathbb{M}) \leqslant \mathbf{M}^{X}.$$

Natural dualities: embeddings

Natural embeddings

For every $\textbf{A}\in\mathcal{A}$ and $\textbf{X}\in\mathfrak{X},$ there are naturally defined embeddings

$$e_{\mathbf{A}}: \mathbf{A} \to ED(\mathbf{A})$$
 and $\varepsilon_{\mathbf{X}}: \mathbf{X} \to DE(\mathbf{X}).$

Natural dualities: embeddings

Natural embeddings

For every $\textbf{A} \in \mathcal{A}$ and $\textbf{X} \in \mathfrak{X},$ there are naturally defined embeddings

 $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ and $\varepsilon_{\mathbf{X}} : \mathbf{X} \to DE(\mathbf{X}).$

These embeddings yield natural transformations

 $e: \operatorname{id}_{\mathcal{A}} \to ED$ and $e: \operatorname{id}_{\mathfrak{X}} \to DE$,

and $\langle D, E, e, \varepsilon \rangle$ is a dual adjunction between \mathcal{A} and \mathfrak{X} .

Duality

If $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ is an isomorphism, for all \mathbf{A} in \mathcal{A} , then we say that \mathbb{M} yields a duality on \mathcal{A} (or that \mathbb{M} dualises \mathbf{M}).

Duality

If $e_{\mathbf{A}} : \mathbf{A} \to ED(\mathbf{A})$ is an isomorphism, for all \mathbf{A} in \mathcal{A} , then we say that \mathbb{M} yields a duality on \mathcal{A} (or that \mathbb{M} dualises \mathbf{M}).

If some alter ego dualises **M**, then we say that **M** is dualisable.

Full duality

If, in addition, $\varepsilon_{\mathbf{X}} \colon \mathbf{X} \to DE(\mathbf{X})$ is an isomorphism, for all \mathbf{X} in \mathcal{X} , then we say that \mathbb{M} yields a full duality on \mathcal{A} (or that \mathbb{M} fully dualises \mathbf{M}).

Full duality

If, in addition, $\varepsilon_{\mathbf{X}} \colon \mathbf{X} \to DE(\mathbf{X})$ is an isomorphism, for all \mathbf{X} in \mathfrak{X} , then we say that \mathbb{M} yields a full duality on \mathcal{A} (or that \mathbb{M} fully dualises \mathbf{M}).

If some alter ego fully dualises **M**, then we say that **M** is fully dualisable.

 Our original example — Priestley duality — is an example of a full duality.

- Our original example Priestley duality is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)

- Our original example Priestley duality is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)
- The unary algebra

is dualisable, but not fully dualisable. (Hyndman, Willard 00)

- Our original example Priestley duality is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)
- The unary algebra

is dualisable, but not fully dualisable. (Hyndman, Willard 00)

▶ The two-element implication algebra $I := \langle \{0, 1\}; \rightarrow \rangle$ is not dualisable.

(Davey, Werner 80)

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

M is dualisable if and only if Pol(≤) contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

M is dualisable if and only if Pol(≤) contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

► If $\langle M; \leqslant \rangle$ is a fence, then $Pol(\leqslant)$ contains a majority operation and hence $\mathbf{M} = \langle M; Pol(\leqslant) \rangle$ is dualisable.

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

M is dualisable if and only if Pol(≤) contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- ► If $\langle M; \leqslant \rangle$ is a fence, then $Pol(\leqslant)$ contains a majority operation and hence $\mathbf{M} = \langle M; Pol(\leqslant) \rangle$ is dualisable.
- If ⟨M; ≤⟩ is a crown, then Pol(≤) contains no NU operation (Demetrovics, Rónyai 89)

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

M is dualisable if and only if Pol(≤) contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- ► If $\langle M; \leqslant \rangle$ is a fence, then $Pol(\leqslant)$ contains a majority operation and hence $\mathbf{M} = \langle M; Pol(\leqslant) \rangle$ is dualisable.
- If ⟨M; ≤⟩ is a crown, then Pol(≤) contains no NU operation (Demetrovics, Rónyai 89)

and hence $\mathbf{M} = \langle M; Pol(\leq) \rangle$ is not dualisable.

Let \leq be an order on a finite set *M* and let $\mathbf{M} = \langle M; Pol(\leq) \rangle$ be the corresponding order-primal algebra.

M is dualisable if and only if Pol(≤) contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- ► If $\langle M; \leqslant \rangle$ is a fence, then $Pol(\leqslant)$ contains a majority operation and hence $\mathbf{M} = \langle M; Pol(\leqslant) \rangle$ is dualisable.
- If ⟨M; ≤⟩ is a crown, then Pol(≤) contains no NU operation (Demetrovics, Rónyai 89) and hence M = ⟨M; Pol(≤)⟩ is not dualisable.
- It was this final example that led to Paper 1 co-authored with JB.

Outline

A survival guide to natural dualities

- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Distance in ordered sets - crowns

d(b, b') = 2 d(b, b') = 3 d(b, b') = 4

Antipodes

The definition of a braid

Let **P** be a connected ordered set with at least three elements.

• Define the distance function $d: P^2 \to \mathbb{N}$ by

d(a, b) = number of edges in a min-sized fence from *a* to *b*.

The reach of P is the 'maximum' distance between elements:

 $r(\mathbf{P}) := \sup\{ d(a,b) \mid a, b \in \mathbf{P} \}.$

- ► Two elements b, b' of **P** are antipodal if $d(b, b') = r(\mathbf{P})$.
- The ordered set P is a braid if every element of P has a unique antipodal element in P.

Examples of braids

- **0**. The crown \mathbf{C}_n is a braid of reach *n*.
- 1. For a chain **C**, define the tower **T**_C to be the linear sum over **C** of 2-element antichains.

The towers T_C are the only braids of reach 2.

Examples of braids, continued

2. Let *S* be a set with $|S| \ge 3$ and define $P := \mathcal{O}(S) \setminus \{\emptyset, S\}$.

Then $\langle P; \subseteq \rangle$ is a braid of reach 3, where $a' = S \setminus a$.

Examples of braids – cyclone (= chain link) fences

Examples of braids – cyclone fences

F_{*h*,*r*} has height *h*, reach $r \ge 3$, and width h(r - 2) + 2.
The pathological behaviour of braids

Braids-are-Pathological Theorem

Let **P** be a finite braid and let $f: P^n \to P$ be order-preserving. If f is idempotent,

(i.e., $f(a, a, \ldots, a) = a$, for all $a \in P$)

then f is a projection.

We say that **P** is idempotent trivial.

Why does this make braids pathological?

Examples

Familiar algebras have interesting idempotent operations.

- Groups, rings, vector spaces Define $f: G^3 \rightarrow G$ by f(x, y, z) = x - y + z. Then *f* is idempotent, since f(x, x, x) = x, for all $x \in G$.
- ▶ Boolean algebras, lattices, semilattices Define $f: A^2 \rightarrow A$ by $f(x, y) = x \lor y$.

Mal'cev conditions

Many important Mal'cev conditions involve idempotent operations; for example, congruence modularity.

Abelian groups of exponent 2

Let $\mathbf{A} = \langle \mathbf{A}; + \rangle$ be a non-trivial finite abelian group satisfying x + x = 0, i.e., a group of the form $(\mathbb{Z}_2)^m$.

The polynomial operations of **A** are the maps $f: A^n \to A$, for some $n \ge 1$, given by

 $f(x_1,\ldots,x_n) := x_{i_1} + \cdots + x_{i_t} + c$, for some *c* from *A*.

Abelian groups of exponent 2

Let $\mathbf{A} = \langle \mathbf{A}; + \rangle$ be a non-trivial finite abelian group satisfying x + x = 0, i.e., a group of the form $(\mathbb{Z}_2)^m$.

The polynomial operations of **A** are the maps $f: A^n \to A$, for some $n \ge 1$, given by

 $f(x_1,\ldots,x_n) := x_{i_1} + \cdots + x_{i_l} + c$, for some *c* from *A*.

The collection ${\mathcal A}$ of all polynomial operations of ${\boldsymbol A}$

(a) is a clone, i.e.,

- contains all the projections $\pi_i \colon A^n \to A$,
- is closed under composition,
- (b) contains all the constant operations $c: A^n \to A$,
- (c) is 2-idempotent trivial, i.e, the only polynomials $f: A^2 \to A$ such that f(a, a) = a, for all $a \in A$, are the two projections;
- (d) is not idempotent trivial, i.e, there is some $f : A^n \to A$ such that f(a, a, ..., a) = a, for all $a \in A$, and f is not a projection take n = 3 and $f(x_1, x_2, x_3) := x_1 + x_2 + x_3$.

A beautiful theorem

Abelian Group Theorem

Let C be a collection of operations on a finite set A.

Assume that \mathcal{C}

- (a) is a clone,
- (b) contains all the constant operations $c \colon A^n \to A$,
- (c) is 2-idempotent trivial, and
- (d) is not idempotent trivial.

A beautiful theorem

Abelian Group Theorem

Let C be a collection of operations on a finite set A.

Assume that \mathcal{C}

- (a) is a clone,
- (b) contains all the constant operations $c: A^n \to A$,
- (c) is 2-idempotent trivial, and
- (d) is not idempotent trivial.

Then there is a binary operation + in C such that

• $\langle A; + \rangle$ is an abelian group satisfying x + x = 0, and

• *C* is the collection of polynomial operations of $\langle A; + \rangle$. In particular, $|A| = 2^m$, for some $m \ge 1$.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

That is, if **P** is 2-idempotent trivial, then it is idempotent trivial.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

That is, if **P** is 2-idempotent trivial, then it is idempotent trivial.

Proof.

Suppose that P is 2-idempotent trivial but not idempotent trivial. Let C be the clone of order-preserving functions on P.

- Then C satisfies conditions (a)–(e) of the theorem.
- ► Thus there is a binary operation + in C such that (A; +) is an abelian group satisfying x + x = 0.
- This implies that P is an antichain and so is not 2-idempotent trivial, *f*.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

That is, if **P** is 2-idempotent trivial, then it is idempotent trivial.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

That is, if **P** is 2-idempotent trivial, then it is idempotent trivial.

Braids-are-Pathological Theorem

Every finite braid is 2-idempotent trivial and therefore idempotent trivial.

Corollary 1

Let **P** be a finite ordered set and assume that every idempotent order-preserving function $f: P^2 \to P$ is a projection. Then every idempotent order-preserving function $f: P^n \to P$ is a projection, for all $n \ge 2$.

That is, if **P** is 2-idempotent trivial, then it is idempotent trivial.

Braids-are-Pathological Theorem

Every finite braid is 2-idempotent trivial and therefore idempotent trivial.

Corollary 2

If Arrow's Theorem is true when there are only 2 voters, then it it is true for any number n of voters, with $n \ge 2$.

Outline

A survival guide to natural dualities

 Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem

Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems

 Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection

 Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Open Problem 1

Does every finite dualisable algebra generate a finitely based variety?

Open Problem 1

Does every finite dualisable algebra generate a finitely based variety?

It was this problem that led to Paper 2 co-authored with Bill.

Open Problem 1

Does every finite dualisable algebra generate a finitely based variety?

- It was this problem that led to Paper 2 co-authored with Bill.
- Finiteness is necessary: the flat semilattice
 F := ⟨ℤ ∪ {⊥}; ∧, s, s⁻¹, ⊥⟩ is self-dualising and generates a non-finitely based variety.

(Davey, Jackson, Pitkethly, Talukder 07)

Open Problem 1

Does every finite dualisable algebra generate a finitely based variety?

- It was this problem that led to Paper 2 co-authored with Bill.
- Finiteness is necessary: the flat semilattice
 F := (Z ∪ {⊥}; ∧, s, s⁻¹, ⊥) is self-dualising and generates a non-finitely based variety.
 (Davey, Jackson, Pitkethly, Talukder 07)

In 1976, Park conjectured that every finite algebra of finite signature that generates a residually finite variety must be finitely based.

Open Problem 2

Is every finite dualisable algebra of finite signature that generates a residually finite variety necessarily finitely based?

Let $\mathbf{G} = \langle V; r \rangle$ be a graph, i.e., r is a symmetric binary relation on the set V. The graph algebra of \mathbf{G} is the algebra $\mathbf{A}(\mathbf{G}) := \langle V \cup \{0\}; \cdot \rangle$ where

$$u \cdot v = egin{cases} u & ext{ if } (u,v) \in r, \ 0 & ext{ otherwise.} \end{cases}$$

Let $\mathbf{G} = \langle V; r \rangle$ be a graph, i.e., r is a symmetric binary relation on the set V. The graph algebra of \mathbf{G} is the algebra $\mathbf{A}(\mathbf{G}) := \langle V \cup \{0\}; \cdot \rangle$ where

$$u \cdot v = \begin{cases} u & \text{if } (u, v) \in r, \\ 0 & \text{otherwise.} \end{cases}$$

The groupoid A(M) was invented by V.L. Murskii in 1965.

Theorem

The following statements are equivalent for any finite graph ${f G}.$

- (i) A(G) is dualisable.
- (ii) Each connected component of G is either complete (with all loops), bipartite complete (with no loops), or a loose vertex.
- (iii) A(G) is finitely based.

TheoremThe following statements are equivalent for any finite graph G.(i) A(G) is not dualisable.

(iv) At least one of M, L₃, T, or P₄ is an induced subgraph of G.
(v) A(G) is not finitely based.

Theorem

The following statements are equivalent for any finite graph G.

- (i) A(G) is not dualisable.
- (ii) A(G) is inherently non-dualisable.

(iv) At least one of M, L₃, T, or P₄ is an induced subgraph of G.
(v) A(G) is not finitely based.

Theorem

The following statements are equivalent for any finite graph G.

- (i) A(G) is not dualisable.
- (ii) A(G) is inherently non-dualisable.

(iv) At least one of M, L₃, T, or P₄ is an induced subgraph of G.
(v) A(G) is not finitely based.

Theorem

The following statements are equivalent for any finite graph G.

- (i) A(G) is not dualisable.
- (ii) A(G) is inherently non-dualisable.
- (iii) A(G) is inherently non- κ -dualisable for every cardinal κ .
- (iv) At least one of M, L_3 , T, or P_4 is an induced subgraph of G.
- (v) **A**(**G**) is not finitely based.

Theorem

The following statements are equivalent for any finite graph G.

- (i) A(G) is not dualisable.
- (ii) A(G) is inherently non-dualisable.
- (iii) A(G) is inherently non- κ -dualisable for every cardinal κ .
- (iv) At least one of M, L_3 , T, or P_4 is an induced subgraph of G.
- (v) **A**(**G**) is not finitely based.

Inherent non-dualisability

The important concept of inherent non-dualisability was introduced in this paper.

Definition

A finite algebra \mathbf{M} is inherently non-dualisable if every finite algebra \mathbf{M}' that has \mathbf{M} as a subalgebra is non-dualisable.

Inherent non-dualisability

The important concept of inherent non-dualisability was introduced in this paper.

Definition

A finite algebra \mathbf{M} is inherently non-dualisable if every finite algebra \mathbf{M}' that has \mathbf{M} as a subalgebra is non-dualisable.

The very useful Non-Dualisability Lemma and Inherent Non-Dualisability Lemma also come from this paper.

The ND Lemma and the IND Lemma

Every known example of non-dualisability and inherent non-dualisability can be proved by applying these lemmas.

κ -dualisability

There is no need to insist that the signature of an alter ego $\ensuremath{\mathbb{M}}$ be finitary.

Definition

A finite algebra **M** is κ -dualisable if $\mathbb{M}_{\kappa} := \langle M; R_{\kappa}, \mathfrak{T} \rangle$ yields a duality on ISP(**M**), where R_{κ} is the set of all **less-than-\kappa-ary** compatible relations on **M**.

Hence dualisability in the usual sense is precisely ω-dualisability.

Open Problem 3

Is there a finite algebra that is κ -dualisable, for some cardinal κ , but is not ω -dualisable?

Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

To each finite algebra **A** assign the smallest κ such that **A** is κ -dualisable, if such κ exists, and ∞ otherwise. The resulting set of cardinals (plus ∞) is the dualisability spectrum S_d.

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

To each finite algebra **A** assign the smallest κ such that **A** is κ -dualisable, if such κ exists, and ∞ otherwise. The resulting set of cardinals (plus ∞) is the dualisability spectrum S_d.

The Hanf number for dualisability is the smallest cardinal strictly larger than every cardinal in S_d.

Open Problem 4

Find the Hanf number for dualisability.

Open Problem 4

Find the Hanf number for dualisability.

What is known?

- Pitkethly (2011) proved that the Hanf number for dualisability is at least ℵ₂.
- Pitkethly (2010) proved that the Hanf number for the class of unary algebras is either ω or at least ℵ₂.
Outline

A survival guide to natural dualities

- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

For clarity, given a finite structure M = ⟨M; G, H, R⟩, we shall define

$$\mathbb{M}_{\mathbb{T}} := \langle \pmb{M}; \pmb{G}, \pmb{H}, \pmb{R}, \mathbb{T}
angle$$

to be the corresponding discretely topologised structure.

For clarity, given a finite structure M = ⟨M; G, H, R⟩, we shall define

$$\mathbb{M}_{\mathbb{T}} := \langle \boldsymbol{M}; \boldsymbol{G}, \boldsymbol{H}, \boldsymbol{R}, \mathfrak{T} \rangle$$

to be the corresponding discretely topologised structure.

• Let **M** be a finite algebra and assume that $\mathbb{M}_{\mathbb{T}}$ is an alter ego that fully dualises **M**.

For clarity, given a finite structure M = ⟨M; G, H, R⟩, we shall define

$$\mathbb{M}_{\mathbb{T}} := \langle \boldsymbol{M}; \boldsymbol{G}, \boldsymbol{H}, \boldsymbol{R}, \boldsymbol{\mathfrak{T}} \rangle$$

to be the corresponding discretely topologised structure.

- ► Let M be a finite algebra and assume that M_T is an alter ego that fully dualises M.
- The resulting dual equivalence between A := ISP(M) and X := IS_cP⁺(M_T) will be most useful if we have a syntactic description of the dual category X, and preferably a first-order description.

For clarity, given a finite structure M = ⟨M; G, H, R⟩, we shall define

$$\mathbb{M}_{\mathfrak{T}} := \langle \boldsymbol{M}; \boldsymbol{G}, \boldsymbol{H}, \boldsymbol{R}, \boldsymbol{\mathfrak{T}} \rangle$$

to be the corresponding discretely topologised structure.

- Let M be a finite algebra and assume that M_T is an alter ego that fully dualises M.
- The resulting dual equivalence between A := ISP(M) and X := IS_cP⁺(M_T) will be most useful if we have a syntactic description of the dual category X, and preferably a first-order description.
- The search for such descriptions led to the concept of standardness.

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$\gamma(\vec{\mathbf{v}}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{\mathbf{v}}), \quad \text{or} \quad \left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{\mathbf{v}})\right) \rightarrow \gamma(\vec{\mathbf{v}}),$$

where $\gamma(\vec{v})$ and all $\alpha_i(\vec{v})$ are atomic formulas.

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$\gamma(\vec{\mathbf{v}}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{\mathbf{v}}), \quad \text{or} \quad \left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{\mathbf{v}})\right) \rightarrow \gamma(\vec{\mathbf{v}}),$$

where $\gamma(\vec{v})$ and all $\alpha_i(\vec{v})$ are atomic formulas.

For each finite structure \mathbb{M} , we have

$$\mathsf{ISP}^+(\mathbb{M}) = \mathsf{Mod}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$$

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$\gamma(\vec{\mathbf{v}}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{\mathbf{v}}), \quad \text{or} \quad \left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{\mathbf{v}})\right) \rightarrow \gamma(\vec{\mathbf{v}}),$$

where $\gamma(\vec{v})$ and all $\alpha_i(\vec{v})$ are atomic formulas.

► For each finite structure M, we have

$$\mathsf{ISP}^+(\mathbb{M}) = \mathsf{Mod}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$$

▶ In general, $IS_cP^+(M_T) \subseteq Mod_{BT}(Th_{uH}(M))$.

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$\gamma(\vec{\mathbf{v}}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{\mathbf{v}}), \quad \text{or} \quad \left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{\mathbf{v}})\right) \rightarrow \gamma(\vec{\mathbf{v}}),$$

where $\gamma(\vec{v})$ and all $\alpha_i(\vec{v})$ are atomic formulas.

► For each finite structure M, we have

$$\mathsf{ISP}^+(\mathbb{M}) = \mathsf{Mod}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$$

- ▶ In general, $IS_cP^+(M_T) \subseteq Mod_{BT}(Th_{uH}(M))$.
- We say that the structure M (and that the corresponding topological structure M_T) is standard if

 $\mathsf{IS}_{c}\mathsf{P}^{\scriptscriptstyle +}(\mathbb{M}_{\mathfrak{T}}) = \mathsf{Mod}_{\mathsf{BT}}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$

Standard structures

We say that the structure $\mathbb M$ (and that the corresponding topological structure $\mathbb M_{\mathbb T})$ is standard if

 $\mathsf{IS}_{\mathsf{c}}\mathsf{P}^{\scriptscriptstyle +}(\mathbb{M}_{\mathfrak{T}})=\mathsf{Mod}_{\mathsf{BT}}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$

Examples

- The cyclic group $\mathbb{C}_n = \langle C_n; \cdot, -1, 1 \rangle$ is standard:
 - ► ISP⁺(C_n) is the class of abelian groups satisfying xⁿ = 1, and
 - IS_cP⁺((ℂ_n)_𝔅) is the class of Boolean topological abelian groups satisfying xⁿ = 1.
- The two-element chain $2 = \langle \{0, 1\}; \leq \rangle$ is not standard:
 - ISP⁺(2) is the class of ordered sets, while
 - ► IS_cP⁺(2_T) is the class of Priestley spaces, which is not the class of Boolean topological ordered sets (Stralka 80).

Standard structures

After its introduction in 2003, standardness became a study in its own right, independent of duality theory.

Standard structures

- After its introduction in 2003, standardness became a study in its own right, independent of duality theory.
- In Paper 3, co-authored with Ralph, we found a surprising connection between two purely algebraic conditions on a finite algebra and the topological condition of standardness.

Definition

Let **A** be an algebra and let θ be an equivalence relation on *A*.

Definition

- Let **A** be an algebra and let θ be an equivalence relation on *A*.
- ► Let T_x be the set of all terms in the signature of **A** and variables $x, z_1, z_2, ...,$ and let $F \subseteq T_x$. Define θ_F by $(a, b) \in \theta_F$ if and only if

$$(\forall f \in F)(\forall \vec{c} \in A) \ (f^{A}(a, \vec{c}), f^{A}(b, \vec{c})) \in \theta.$$

Definition

- Let **A** be an algebra and let θ be an equivalence relation on *A*.
- ► Let T_x be the set of all terms in the signature of **A** and variables $x, z_1, z_2, ...,$ and let $F \subseteq T_x$. Define θ_F by $(a, b) \in \theta_F$ if and only if

$$(\forall f \in F)(\forall \vec{c} \in A) \ (f^{A}(a, \vec{c}), f^{A}(b, \vec{c})) \in \theta.$$

Syn(θ) := θ_{Tx} is the largest congruence on A contained in θ and is called the syntactic congruence of θ.

Definition

- Let **A** be an algebra and let θ be an equivalence relation on *A*.
- ► Let T_x be the set of all terms in the signature of **A** and variables $x, z_1, z_2, ...,$ and let $F \subseteq T_x$. Define θ_F by $(a, b) \in \theta_F$ if and only if

$$(\forall f \in F)(\forall \vec{c} \in A) \ (f^{A}(a, \vec{c}), f^{A}(b, \vec{c})) \in \theta.$$

- Syn(θ) := θ_{T_x} is the largest congruence on **A** contained in θ and is called the syntactic congruence of θ .
- A class K of algebras has Finitely Determined Syntactic Congruences if there is a finite subset F of T_x such that Syn(θ) := θ_F, for every equivalence relation θ on every algebra in K.

• Let **A** be an algebra and let $a, b \in A$.

- Let **A** be an algebra and let $a, b \in A$.
- ▶ Let $F \subseteq T_x$. Define $C_F^{\mathbf{A}}(a, b)$ by $(c, d) \in C_F^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_1, \ldots, f_k \in F$ and $\vec{e}_1, \ldots, \vec{e}_k$ in A,

$$egin{aligned} c &= f_1^{\mathbf{A}}(d_1, ec e_1) \ f_1^{\mathbf{A}}(d_1', ec e_1) &= f_2^{\mathbf{A}}(d_2, ec e_2) \ &dots \ &dots\ \ &dots \ &dots \ ˙$$

where $\{d_i, d'_i\} = \{a, b\}$, for i = 1, ..., k.

- Let **A** be an algebra and let $a, b \in A$.
- ▶ Let $F \subseteq T_x$. Define $C_F^{\mathbf{A}}(a, b)$ by $(c, d) \in C_F^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_1, \ldots, f_k \in F$ and $\vec{e}_1, \ldots, \vec{e}_k$ in A,

$$egin{aligned} c &= f_1^{\mathbf{A}}(d_1, ec{e}_1) \ f_1^{\mathbf{A}}(d_1', ec{e}_1) &= f_2^{\mathbf{A}}(d_2, ec{e}_2) \ dots \ dots \ f_k^{\mathbf{A}}(d_k', ec{e}_k) &= d, \end{aligned}$$

where $\{d_i, d_i'\} = \{a, b\}$, for i = 1, ..., k. • Clearly, $C_F^{\mathbf{A}}(a, b) \subseteq Cg^{\mathbf{A}}(a, b)$.

- Let **A** be an algebra and let $a, b \in A$.
- ▶ Let $F \subseteq T_x$. Define $C_F^{\mathbf{A}}(a, b)$ by $(c, d) \in C_F^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_1, \ldots, f_k \in F$ and $\vec{e}_1, \ldots, \vec{e}_k$ in A,

$$c = f_1^{\mathbf{A}}(d_1, \vec{e}_1)$$

 $f_1^{\mathbf{A}}(d_1', \vec{e}_1) = f_2^{\mathbf{A}}(d_2, \vec{e}_2)$
 \vdots

$$f_k^{\mathbf{A}}(d'_k, \vec{e}_k) = d,$$

where $\{d_i, d'_i\} = \{a, b\}$, for i = 1, ..., k.

- Clearly, $C_F^{\mathbf{A}}(a, b) \subseteq Cg^{\mathbf{A}}(a, b)$.
- ► A class \mathcal{K} of algebras has Term Finite Principal Congruences if there is a finite subset F of T_x such that $C_F^{\mathbf{A}}(a, b) = Cg^{\mathbf{A}}(a, b)$, for all a, b in every algebra \mathbf{A} in \mathcal{K} .

Theorem

Let A be an algebra and let F ⊆ T_x. Then F determines syntactic congruences on A if and only if F determines principal congruences on A.

Theorem

- Let A be an algebra and let F ⊆ T_x. Then F determines syntactic congruences on A if and only if F determines principal congruences on A.
- A class \mathfrak{K} of algebras has FDSC if and only if it has TFPC.

Theorem

- Let A be an algebra and let F ⊆ T_x. Then F determines syntactic congruences on A if and only if F determines principal congruences on A.
- A class \mathfrak{K} of algebras has FDSC if and only if it has TFPC.
- If a variety has DPC, then it has TFPC and therefore has FDSC.

Theorem

- Let A be an algebra and let F ⊆ T_x. Then F determines syntactic congruences on A if and only if F determines principal congruences on A.
- A class \mathfrak{K} of algebras has FDSC if and only if it has TFPC.
- If a variety has DPC, then it has TFPC and therefore has FDSC.

Algebras with FDSC (= TFPC)

- Monoids: $F = \{z_1 x z_2\}.$
- Every finitely generated variety of unary algebras.
- Groups: $F = \{z_1 x z_2, z_1 x^{-1} z_2\}.$
- Semigroups: $F = \{x, z_1x, xz_2, z_1xz_2\}$
- Every finitely generated variety of lattices.

Algebras without FDSC (= TFPC)

Algebras without FDSC (= TFPC)

- If a variety V contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then V does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.

° 0

Algebras without FDSC (= TFPC)

- If a variety V contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then V does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.
- McKenzie's algebra A(T) generates a variety without FDSC in the case that the Turing machine T does not halt.

(The algebra \mathbf{Q}_{ω} constructed by McKenzie is SI and has a compatible Boolean topology.)

Algebras without FDSC (= TFPC)

- If a variety V contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then V does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.
- McKenzie's algebra A(T) generates a variety without FDSC in the case that the Turing machine T does not halt.
 (The algebra Q_ω constructed by McKenzie is SI and has a compatible Boolean topology.)
- In a recent preprint, Nurakunov, Stronkovski (2018) prove that it is undecidable whether a finite algebra generates a variety with FDSC. They use using the algebra A'(T) constructed by Moore (2015).

° 0

The surprising connection

FDSC-HSP Theorem

Let $\mathbb{M} = \langle M; G \rangle$ be a finite algebra. Assume that

- ▶ HSP(M) has FDSC, and
- ▶ $\mathsf{HSP}(\mathbb{M}) = \mathsf{ISP}(\mathbb{M}).$

Then \mathbb{M} is standard and hence $\mathsf{IS}_{c}\mathsf{P}^{+}(\mathbb{M}_{\mathfrak{T}}) = \mathsf{Mod}_{\mathsf{BT}}(\mathsf{Th}_{\mathsf{uH}}(\mathbb{M})).$

Outline

A survival guide to natural dualities

- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Lifting full dualities from the finite level

- Let M be a finite algebra and let M = ⟨M; G, R, T⟩ be an alter ego of M with G ∪ R finite (and H = Ø).
 If M yields a full duality between A and X, (Hofmann 02)
- Let 3 = ⟨{0, a, 1}; ∨, ∧, 0, 1⟩ be the three-element chain and let 3 := ⟨{0, a, 1}; f, g, h, ℑ⟩, where

- ► The alter ego 3
 - yields a duality between $\mathcal{D} = \mathsf{ISP}(3)$ and $\mathfrak{X} := \mathsf{IS}_{c}\mathsf{P}^{+}(3)$,
 - yields a full duality between \mathcal{D}_{fin} and \mathcal{X}_{fin} ,
 - but does not yield a full duality between \mathcal{D} and \mathfrak{X} .

(Davey, Haviar and Willard 05)

A further surprising connection

Full dualities and standardness

Davey, Pitkethly, Willard (2018) found a surprising connection between full dualities and standardness.

Theorem

Let M be a finite algebra, let $\mathcal{A} = \mathsf{ISP}(M)$ and let \mathbb{M}_1 and \mathbb{M}_2 be alter egos of M. Assume that

- \mathbb{M}_1 yields a full duality between \mathcal{A} and \mathfrak{X}_1 ,
- \blacktriangleright \mathbb{M}_1 is standard, and
- \mathbb{M}_2 yields a full duality between \mathcal{A}_{fin} and $(\mathfrak{X}_2)_{fin}$.

Then \mathbb{M}_2 yields a full duality between $\mathcal A$ and $\mathfrak X_2$ and \mathbb{M}_2 is standard.

Quasi-primal algebras

Every alter ego of a quasi-primal algebra that yields a full duality at the finite level yields a full duality and is standard.