A tale of three papers: a beautiful theorem, four open problems, a surprising connection

My joint work with Bill, JB and Ralph

Brian A. Davey
Algebras and Lattices in Hawai'i
May 23, 2018

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Priestley duality

Bounded distributive lattices

Priestley duality

Bounded distributive lattices

Priestley duality

Bounded distributive lattices

Priestley spaces

Priestley duality

Bounded distributive lattices

Priestley duality

Bounded distributive lattices
$\mathcal{D}=\operatorname{ISP}(\mathbf{D})$, where
$\mathbf{D}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$

Priestley spaces
$\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}(\mathbb{D})$, where
$\mathbb{D}=\langle\{0,1\} ; \leqslant, \mathcal{T}\rangle$

Natural dualities: alter egos

Generalizing this and many other examples, we start with a finite algebra \mathbf{M} and wish to find a dual category for the quasivariety $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$.
An alter ego of a finite algebra
A finitary structure $\mathbb{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ is an alter ego of \mathbf{M} if

- G is a set of compatible operations on \mathbf{M},
- H is a set of compatible partial operations on \mathbf{M},
- R is a set of compatible relations on \mathbf{M},
- \mathcal{T} is the discrete topology on M.

An alter ego of \mathbf{M} is often denoted by \mathbf{M} instead of \mathbb{M}.

Natural dualities: categories and functors
Fix a finite algebra \mathbf{M} and let $\mathbb{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ be an alter ego of M.

Natural dualities: categories and functors

Fix a finite algebra \mathbf{M} and let $\mathbb{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ be an alter ego of M.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$: the algebraic category of interest.
- Define $\mathcal{X}:=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\mathbb{M})$: the potential dual category for \mathcal{A}.

Natural dualities: categories and functors

Fix a finite algebra \mathbf{M} and let $\mathbb{M}=\langle M ; G, H, R, \mathcal{T}\rangle$ be an alter ego of M.
The categories \mathcal{A} and \mathcal{X}

- Define $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$: the algebraic category of interest.
- Define $\mathcal{X}:=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\mathbb{M})$: the potential dual category for \mathcal{A}.

The contravariant functors D and E

- There are natural hom-functors $D: \mathcal{A} \rightarrow \mathcal{X}$ and $E: \mathcal{X} \rightarrow \mathcal{A}$.
- For each algebra \mathbf{A} in \mathcal{A},

$$
D(\mathbf{A})=\operatorname{hom}(\mathbf{A}, \mathbf{M}) \leqslant \mathbb{M}^{A}
$$

- For each structure \mathbf{X} in \boldsymbol{X},

$$
E(\mathbf{X})=\operatorname{hom}(\mathbf{X}, \mathbb{M}) \leqslant \mathbf{M}^{X}
$$

Natural dualities: embeddings

Natural embeddings
For every $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are naturally defined embeddings

$$
e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A}) \quad \text { and } \quad \varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X}) .
$$

Natural dualities: embeddings

Natural embeddings
For every $\mathbf{A} \in \mathcal{A}$ and $\mathbf{X} \in \mathcal{X}$, there are naturally defined embeddings

$$
e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A}) \quad \text { and } \quad \varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X}) .
$$

These embeddings yield natural transformations

$$
e: \operatorname{id}_{\mathcal{A}} \rightarrow E D \quad \text { and } \quad \varepsilon: \operatorname{id}_{x} \rightarrow D E,
$$

and $\langle D, E, e, \varepsilon\rangle$ is a dual adjunction between \mathcal{A} and \boldsymbol{X}.

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that \mathbb{M} yields a duality on \mathcal{A} (or that \mathbb{M} dualises \mathbb{M}).

Duality

If $e_{\mathbf{A}}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is an isomorphism, for all \mathbf{A} in \mathcal{A}, then we say that \mathbb{M} yields a duality on \mathcal{A} (or that \mathbb{M} dualises \mathbb{M}).

If some alter ego dualises \mathbf{M}, then we say that \mathbf{M} is dualisable.

Full duality

If, in addition, $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow D E(\mathbf{X})$ is an isomorphism, for all \mathbf{X} in X, then we say that \mathbb{M} yields a full duality on \mathcal{A} (or that \mathbb{M} fully dualises \mathbf{M}).

Full duality

If, in addition, $\varepsilon_{\mathbf{X}}: \mathbf{X} \rightarrow \operatorname{DE}(\mathbf{X})$ is an isomorphism, for all \mathbf{X} in \mathbf{X}, then we say that \mathbb{M} yields a full duality on \mathcal{A} (or that \mathbb{M} fully dualises M).

If some alter ego fully dualises \mathbf{M}, then we say that \mathbf{M} is fully dualisable.

Examples

- Our original example - Priestley duality — is an example of a full duality.

Examples

- Our original example - Priestley duality - is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)

Examples

- Our original example - Priestley duality — is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)
- The unary algebra

is dualisable, but not fully dualisable.
(Hyndman, Willard 00)

Examples

- Our original example - Priestley duality — is an example of a full duality.
- Every finite algebra with an NU term is fully dualisable. (Davey, Werner 80 and Clark, Davey 95)
- The unary algebra

is dualisable, but not fully dualisable.
(Hyndman, Willard 00)
- The two-element implication algebra $\mathbf{I}:=\langle\{0,1\} ; \rightarrow\rangle$ is not dualisable.
(Davey, Werner 80)

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

- \mathbf{M} is dualisable if and only if $\operatorname{Pol}(\leqslant)$ contains an NU operation.
(Davey, Quackenbush, Schweigert 90 and
Davey, Heindorf, McKenzie 95)

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

- \mathbf{M} is dualisable if and only if $\operatorname{Pol}(\leqslant)$ contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- If $\langle M ; \leqslant\rangle$ is a fence, then $\operatorname{Pol}(\leqslant)$ contains a majority operation and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is dualisable.

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

- \mathbf{M} is dualisable if and only if $\operatorname{Pol}(\leqslant)$ contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- If $\langle M ; \leqslant\rangle$ is a fence, then $\operatorname{Pol}(\leqslant)$ contains a majority operation and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is dualisable.
- If $\langle M ; \leqslant\rangle$ is a crown, then $\operatorname{Pol}(\leqslant)$ contains no NU operation (Demetrovics, Rónyai 89)

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

- \mathbf{M} is dualisable if and only if $\operatorname{Pol}(\leqslant)$ contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- If $\langle M ; \leqslant\rangle$ is a fence, then $\operatorname{Pol}(\leqslant)$ contains a majority operation and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is dualisable.
- If $\langle M ; \leqslant\rangle$ is a crown, then $\operatorname{Pol}(\leqslant)$ contains no NU operation (Demetrovics, Rónyai 89) and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is not dualisable.

Examples

Let \leqslant be an order on a finite set M and let $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ be the corresponding order-primal algebra.

- \mathbf{M} is dualisable if and only if $\operatorname{Pol}(\leqslant)$ contains an NU operation.

(Davey, Quackenbush, Schweigert 90 and Davey, Heindorf, McKenzie 95)

- If $\langle M ; \leqslant\rangle$ is a fence, then $\operatorname{Pol}(\leqslant)$ contains a majority operation and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is dualisable.
- If $\langle M ; \leqslant\rangle$ is a crown, then $\operatorname{Pol}(\leqslant)$ contains no NU operation (Demetrovics, Rónyai 89) and hence $\mathbf{M}=\langle M ; \operatorname{Pol}(\leqslant)\rangle$ is not dualisable.
- It was this final example that led to Paper 1 co-authored with JB.

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Distance in ordered sets - crowns

Antipodes

The definition of a braid

Let \mathbf{P} be a connected ordered set with at least three elements.

- Define the distance function $d: P^{2} \rightarrow \mathbb{N}$ by

$$
d(a, b)=\text { number of edges in a min-sized fence from } a \text { to } b .
$$

- The reach of \mathbf{P} is the 'maximum' distance between elements:

$$
r(\mathbf{P}):=\sup \{d(a, b) \mid a, b \in P\}
$$

- Two elements b, b^{\prime} of \mathbf{P} are antipodal if $d\left(b, b^{\prime}\right)=r(\mathbf{P})$.
- The ordered set \mathbf{P} is a braid if every element of P has a unique antipodal element in \mathbf{P}.

Examples of braids

0 . The crown \mathbf{C}_{n} is a braid of reach n.

1. For a chain \mathbf{C}, define the tower $\mathbf{T}_{\mathbf{C}}$ to be the linear sum over \mathbf{C} of 2 -element antichains.

$\mathrm{T}_{2}=\mathrm{C}_{2}$

T_{3}

The towers $\mathbf{T}_{\mathbf{C}}$ are the only braids of reach 2 .

Examples of braids, continued

2. Let S be a set with $|S| \geqslant 3$ and define $P:=\wp(S) \backslash\{\varnothing, S\}$.

Then $\langle P ; \subseteq\rangle$ is a braid of reach 3 , where $a^{\prime}=S \backslash$ a.

Examples of braids - cyclone (= chain link) fences

Examples of braids - cyclone fences

$F_{3,3}$

$F_{3,4}$
$\mathbf{F}_{h, r}$ has height h, reach $r \geqslant 3$, and width $h(r-2)+2$.

The pathological behaviour of braids

Braids-are-Pathological Theorem
Let \mathbf{P} be a finite braid and let $f: P^{n} \rightarrow P$ be order-preserving. If f is idempotent,

$$
\text { (i.e., } f(a, a, \ldots, a)=a \text {, for all } a \in P \text {) }
$$

then f is a projection.

We say that \mathbf{P} is idempotent trivial.

Why does this make braids pathological?

Examples

Familiar algebras have interesting idempotent operations.

- Groups, rings, vector spaces

Define $f: G^{3} \rightarrow G$ by $f(x, y, z)=x-y+z$.
Then f is idempotent, since $f(x, x, x)=x$, for all $x \in G$.

- Boolean algebras, lattices, semilattices

Define $f: A^{2} \rightarrow A$ by $f(x, y)=x \vee y$.

Mal'cev conditions

- Many important Mal'cev conditions involve idempotent operations; for example, congruence modularity.

Abelian groups of exponent 2

Let $\mathbf{A}=\langle\boldsymbol{A} ;+\rangle$ be a non-trivial finite abelian group satisfying $x+x=0$, i.e., a group of the form $\left(\mathbb{Z}_{2}\right)^{m}$.
The polynomial operations of \mathbf{A} are the maps $f: A^{n} \rightarrow A$, for some $n \geqslant 1$, given by

$$
f\left(x_{1}, \ldots, x_{n}\right):=x_{i_{1}}+\cdots+x_{i_{t}}+c, \quad \text { for some } c \text { from } A .
$$

Abelian groups of exponent 2

Let $\mathbf{A}=\langle A ;+\rangle$ be a non-trivial finite abelian group satisfying $x+x=0$, i.e., a group of the form $\left(\mathbb{Z}_{2}\right)^{m}$.
The polynomial operations of \mathbf{A} are the maps $f: A^{n} \rightarrow A$, for some $n \geqslant 1$, given by

$$
f\left(x_{1}, \ldots, x_{n}\right):=x_{i_{1}}+\cdots+x_{i_{t}}+c, \quad \text { for some } c \text { from } A
$$

The collection \mathcal{A} of all polynomial operations of \mathbf{A}
(a) is a clone, i.e.,

- contains all the projections $\pi_{i}: A^{n} \rightarrow A$,
- is closed under composition,
(b) contains all the constant operations $c: A^{n} \rightarrow A$,
(c) is 2-idempotent trivial, i.e, the only polynomials $f: A^{2} \rightarrow A$ such that $f(a, a)=a$, for all $a \in A$, are the two projections;
(d) is not idempotent trivial, i.e, there is some $f: A^{n} \rightarrow A$ such that $f(a, a, \ldots, a)=a$, for all $a \in A$, and f is not a projection - take $n=3$ and $f\left(x_{1}, x_{2}, x_{3}\right):=x_{1}+x_{2}+x_{3}$.

A beautiful theorem

Abelian Group Theorem

Let \mathcal{C} be a collection of operations on a finite set A.
Assume that \mathcal{C}
(a) is a clone,
(b) contains all the constant operations $c: A^{n} \rightarrow A$,
(c) is 2-idempotent trivial, and
(d) is not idempotent trivial.

A beautiful theorem

Abelian Group Theorem

Let \mathcal{C} be a collection of operations on a finite set A.
Assume that \mathcal{C}
(a) is a clone,
(b) contains all the constant operations $c: A^{n} \rightarrow A$,
(c) is 2-idempotent trivial, and
(d) is not idempotent trivial.

Then there is a binary operation + in \mathcal{C} such that

- $\langle A ;+\rangle$ is an abelian group satisfying $x+x=0$, and
- \mathcal{C} is the collection of polynomial operations of $\langle A ;+\rangle$.

In particular, $|A|=2^{m}$, for some $m \geqslant 1$.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.
That is, if \mathbf{P} is 2-idempotent trivial, then it is idempotent trivial.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.
That is, if \mathbf{P} is 2-idempotent trivial, then it is idempotent trivial.

Proof.

Suppose that \mathbf{P} is 2-idempotent trivial but not idempotent trivial. Let \mathcal{C} be the clone of order-preserving functions on \mathbf{P}.

- Then \mathcal{C} satisfies conditions (a)-(e) of the theorem.
- Thus there is a binary operation + in \mathcal{C} such that $\langle A ;+\rangle$ is an abelian group satisfying $x+x=0$.
- This implies that \mathbf{P} is an antichain and so is not 2 -idempotent trivial, \langle.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.
That is, if \mathbf{P} is 2-idempotent trivial, then it is idempotent trivial.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.
That is, if \mathbf{P} is 2-idempotent trivial, then it is idempotent trivial.

Braids-are-Pathological Theorem

Every finite braid is 2 -idempotent trivial and therefore idempotent trivial.

Abelian groups applied to braids

Corollary 1

Let \mathbf{P} be a finite ordered set and assume that every idempotent order-preserving function $f: P^{2} \rightarrow P$ is a projection. Then every idempotent order-preserving function $f: P^{n} \rightarrow P$ is a projection, for all $n \geqslant 2$.
That is, if \mathbf{P} is 2-idempotent trivial, then it is idempotent trivial.

Braids-are-Pathological Theorem

Every finite braid is 2 -idempotent trivial and therefore idempotent trivial.
Corollary 2
If Arrow's Theorem is true when there are only 2 voters, then it it is true for any number n of voters, with $n \geqslant 2$.

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Open problems

Open Problem 1
Does every finite dualisable algebra generate a finitely based variety?

Open problems

Open Problem 1
Does every finite dualisable algebra generate a finitely based variety?

- It was this problem that led to Paper 2 co-authored with Bill.

Open problems

Open Problem 1
Does every finite dualisable algebra generate a finitely based variety?

- It was this problem that led to Paper 2 co-authored with Bill.
- Finiteness is necessary: the flat semilattice $\mathbf{F}:=\left\langle\mathbb{Z} \cup\{\perp\} ; \wedge, s, s^{-1}, \perp\right\rangle$ is self-dualising and generates a non-finitely based variety.
(Davey, Jackson, Pitkethly, Talukder 07)

Open problems

Open Problem 1
Does every finite dualisable algebra generate a finitely based variety?

- It was this problem that led to Paper 2 co-authored with Bill.
- Finiteness is necessary: the flat semilattice $\mathbf{F}:=\left\langle\mathbb{Z} \cup\{\perp\} ; \wedge, s, s^{-1}, \perp\right\rangle$ is self-dualising and generates a non-finitely based variety.
(Davey, Jackson, Pitkethly, Talukder 07)
In 1976, Park conjectured that every finite algebra of finite signature that generates a residually finite variety must be finitely based.

Open Problem 2
Is every finite dualisable algebra of finite signature that generates a residually finite variety necessarily finitely based?

Graph algebras

Let $\mathbf{G}=\langle V ; r\rangle$ be a graph, i.e., r is a symmetric binary relation on the set V. The graph algebra of \mathbf{G} is the algebra $\mathbf{A}(\mathbf{G}):=\langle V \dot{\cup}\{0\} ; \cdot\rangle$ where

$$
u \cdot v= \begin{cases}u & \text { if }(u, v) \in r \\ 0 & \text { otherwise }\end{cases}
$$

Graph algebras

Let $\mathbf{G}=\langle V ; r\rangle$ be a graph, i.e., r is a symmetric binary relation on the set V. The graph algebra of \mathbf{G} is the algebra $\mathbf{A}(\mathbf{G}):=\langle V \dot{\cup}\{0\} ; \cdot\rangle$ where

$$
u \cdot v= \begin{cases}u & \text { if }(u, v) \in r \\ 0 & \text { otherwise }\end{cases}
$$

Example

M

A(M)

.	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

The groupoid $\mathbf{A}(\mathbf{M})$ was invented by V. L. Murskiï in 1965.

Graph algebras

Theorem
The following statements are equivalent for any finite graph \mathbf{G}.
(i) $\mathbf{A}(\mathbf{G})$ is dualisable.
(ii) Each connected component of \mathbf{G} is either complete (with all loops), bipartite complete (with no loops), or a loose vertex.
(iii) $\mathbf{A}(\mathbf{G})$ is finitely based.

Graph algebras

Theorem
The following statements are equivalent for any finite graph \mathbf{G}.
(i) $\mathbf{A}(\mathbf{G})$ is not dualisable.
(iv) At least one of $\mathbf{M}, \mathbf{L}_{3}, \mathbf{T}$, or \mathbf{P}_{4} is an induced subgraph of \mathbf{G}.
(v) $\mathbf{A}(\mathbf{G})$ is not finitely based.

Graph algebras

Theorem

The following statements are equivalent for any finite graph \mathbf{G}.
(i) $\mathbf{A}(\mathbf{G})$ is not dualisable.
(ii) $\mathbf{A}(\mathbf{G})$ is inherently non-dualisable.
(iv) At least one of $\mathbf{M}, \mathbf{L}_{3}, \mathbf{T}$, or \mathbf{P}_{4} is an induced subgraph of \mathbf{G}.
(v) $\mathbf{A}(\mathbf{G})$ is not finitely based.

Graph algebras

Theorem

The following statements are equivalent for any finite graph G.
(i) $\mathbf{A}(\mathbf{G})$ is not dualisable.
(ii) $\mathbf{A}(\mathbf{G})$ is inherently non-dualisable.
(iv) At least one of $\mathbf{M}, \mathbf{L}_{3}, \mathbf{T}$, or \mathbf{P}_{4} is an induced subgraph of \mathbf{G}.
(v) $\mathbf{A}(\mathbf{G})$ is not finitely based.

Graph algebras

Theorem

The following statements are equivalent for any finite graph \mathbf{G}.
(i) $\mathbf{A}(\mathbf{G})$ is not dualisable.
(ii) $\mathbf{A}(\mathbf{G})$ is inherently non-dualisable.
(iii) $\mathbf{A}(\mathbf{G})$ is inherently non- κ-dualisable for every cardinal κ.
(iv) At least one of $\mathbf{M}, \mathbf{L}_{3}, \mathbf{T}$, or \mathbf{P}_{4} is an induced subgraph of \mathbf{G}.
(v) $\mathbf{A}(\mathbf{G})$ is not finitely based.

Graph algebras

Theorem

The following statements are equivalent for any finite graph \mathbf{G}.
(i) $\mathbf{A}(\mathbf{G})$ is not dualisable.
(ii) $\mathbf{A}(\mathbf{G})$ is inherently non-dualisable.
(iii) $\mathbf{A}(\mathbf{G})$ is inherently non- κ-dualisable for every cardinal κ.
(iv) At least one of $\mathbf{M}, \mathbf{L}_{3}, \mathbf{T}$, or \mathbf{P}_{4} is an induced subgraph of \mathbf{G}.
(v) $\mathbf{A}(\mathbf{G})$ is not finitely based.

Inherent non-dualisability

- The important concept of inherent non-dualisability was introduced in this paper.

Definition
A finite algebra \mathbf{M} is inherently non-dualisable if every finite algebra \mathbf{M}^{\prime} that has \mathbf{M} as a subalgebra is non-dualisable.

Inherent non-dualisability

- The important concept of inherent non-dualisability was introduced in this paper.

Definition
A finite algebra \mathbf{M} is inherently non-dualisable if every finite algebra \mathbf{M}^{\prime} that has \mathbf{M} as a subalgebra is non-dualisable.

- The very useful Non-Dualisability Lemma and Inherent Non-Dualisability Lemma also come from this paper.

The ND Lemma and the IND Lemma
Every known example of non-dualisability and inherent non-dualisability can be proved by applying these lemmas.

κ-dualisability

There is no need to insist that the signature of an alter ego \mathbb{M} be finitary.
Definition
A finite algebra \mathbf{M} is κ-dualisable if $\mathbb{M}_{\kappa}:=\left\langle M ; R_{\kappa}, \mathcal{T}\right\rangle$ yields a duality on $\operatorname{ISP}(\mathbf{M})$, where R_{κ} is the set of all less-than- κ-ary compatible relations on \mathbf{M}.

- Hence dualisability in the usual sense is precisely ω-dualisability.

Open Problem 3
Is there a finite algebra that is κ-dualisable, for some cardinal κ, but is not ω-dualisable?

The Hanf number for dualisability

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.

The Hanf number for dualisability

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.

The Hanf number for dualisability

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

The Hanf number for dualisability

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

To each finite algebra \mathbf{A} assign the smallest κ such that \mathbf{A} is κ-dualisable, if such κ exists, and ∞ otherwise. The resulting set of cardinals (plus ∞) is the dualisability spectrum S_{d}.

The Hanf number for dualisability

- Lampe, McNulty and Willard (2001) proved that every dualisable graph algebra is in fact fully dualisable.
- They introduced a very useful sufficient condition on a finite algebra for a duality to be upgradable to a full duality: having enough total algebraic operations.
- The also introduced the Hanf number for dualisability.

To each finite algebra \mathbf{A} assign the smallest κ such that \mathbf{A} is κ-dualisable, if such κ exists, and ∞ otherwise. The resulting set of cardinals (plus ∞) is the dualisability spectrum S_{d}.

- The Hanf number for dualisability is the smallest cardinal strictly larger than every cardinal in S_{d}.

The Hanf number for dualisability

Open Problem 4
Find the Hanf number for dualisability.

The Hanf number for dualisability

Open Problem 4
Find the Hanf number for dualisability.
What is known?

- Pitkethly (2011) proved that the Hanf number for dualisability is at least \aleph_{2}.
- Pitkethly (2010) proved that the Hanf number for the class of unary algebras is either ω or at least \aleph_{2}.

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Standardness

- For clarity, given a finite structure $\mathbb{M}=\langle M ; G, H, R\rangle$, we shall define

$$
\mathbb{M}_{\mathcal{T}}:=\langle M ; G, H, R, \mathcal{T}\rangle
$$

to be the corresponding discretely topologised structure.

Standardness

- For clarity, given a finite structure $\mathbb{M}=\langle M ; G, H, R\rangle$, we shall define

$$
\mathbb{M}_{\mathcal{T}}:=\langle M ; G, H, R, \mathcal{T}\rangle
$$

to be the corresponding discretely topologised structure.

- Let \mathbf{M} be a finite algebra and assume that $\mathbb{M}_{\mathcal{T}}$ is an alter ego that fully dualises \mathbf{M}.

Standardness

- For clarity, given a finite structure $\mathbb{M}=\langle M ; G, H, R\rangle$, we shall define

$$
\mathbb{M}_{\mathcal{T}}:=\langle M ; G, H, R, \mathcal{T}\rangle
$$

to be the corresponding discretely topologised structure.

- Let \mathbf{M} be a finite algebra and assume that $\mathbb{M}_{\mathcal{J}}$ is an alter ego that fully dualises \mathbf{M}.
- The resulting dual equivalence between $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right)$ will be most useful if we have a syntactic description of the dual category \mathcal{X}, and preferably a first-order description.

Standardness

- For clarity, given a finite structure $\mathbb{M}=\langle M ; G, H, R\rangle$, we shall define

$$
\mathbb{M}_{\mathcal{T}}:=\langle M ; G, H, R, \mathcal{T}\rangle
$$

to be the corresponding discretely topologised structure.

- Let \mathbf{M} be a finite algebra and assume that $\mathbb{M}_{\mathcal{J}}$ is an alter ego that fully dualises \mathbf{M}.
- The resulting dual equivalence between $\mathcal{A}:=\operatorname{ISP}(\mathbf{M})$ and $\mathcal{X}:=\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right)$ will be most useful if we have a syntactic description of the dual category \mathcal{X}, and preferably a first-order description.
- The search for such descriptions led to the concept of standardness.

uH sentences

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$
\gamma(\vec{v}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{v}), \quad \text { or } \quad\left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{v})\right) \rightarrow \gamma(\vec{v})
$$

where $\gamma(\vec{v})$ and all $\alpha_{i}(\vec{v})$ are atomic formulas.

uH sentences

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$
\gamma(\vec{v}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{v}), \quad \text { or } \quad\left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{v})\right) \rightarrow \gamma(\vec{v})
$$

where $\gamma(\vec{v})$ and all $\alpha_{i}(\vec{v})$ are atomic formulas.

- For each finite structure \mathbb{M}, we have

$$
\operatorname{ISP}^{+}(\mathbb{M})=\operatorname{Mod}\left(\operatorname{Th}_{u H}(\mathbb{M})\right)
$$

uH sentences

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$
\gamma(\vec{v}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{v}), \quad \text { or } \quad\left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{v})\right) \rightarrow \gamma(\vec{v})
$$

where $\gamma(\vec{v})$ and all $\alpha_{i}(\vec{v})$ are atomic formulas.

- For each finite structure \mathbb{M}, we have

$$
\operatorname{ISP}^{+}(\mathbb{M})=\operatorname{Mod}\left(\operatorname{Th}_{u H}(\mathbb{M})\right)
$$

- In general, $\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right) \subseteq \operatorname{Mod}_{\mathrm{BT}}\left(\mathrm{Th}_{\mathrm{uH}}(\mathbb{M})\right)$.

uH sentences

A universal Horn sentence (uH sentence, for short) in the language (G, H, R) is a universally quantified formula of the form

$$
\gamma(\vec{v}), \quad \bigvee_{i=1}^{k} \neg \alpha_{i}(\vec{v}), \quad \text { or } \quad\left(\bigwedge_{i=1}^{k} \alpha_{i}(\vec{v})\right) \rightarrow \gamma(\vec{v})
$$

where $\gamma(\vec{v})$ and all $\alpha_{i}(\vec{v})$ are atomic formulas.

- For each finite structure \mathbb{M}, we have

$$
\operatorname{ISP}^{+}(\mathbb{M})=\operatorname{Mod}\left(\operatorname{Th}_{u H}(\mathbb{M})\right)
$$

- In general, $\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right) \subseteq \operatorname{Mod}_{\mathrm{BT}}\left(\operatorname{Th}_{\mathrm{uH}}(\mathbb{M})\right)$.
- We say that the structure \mathbb{M} (and that the corresponding topological structure $\mathbb{M}_{\mathfrak{T}}$) is standard if

$$
\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right)=\operatorname{Mod}_{\mathrm{BT}}\left(\mathrm{Th}_{\mathrm{uH}}(\mathbb{M})\right)
$$

Standard structures

We say that the structure \mathbb{M} (and that the corresponding topological structure $\mathbb{M}_{\mathcal{T}}$) is standard if

$$
I S_{\mathrm{C}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right)=\operatorname{Mod}_{\mathrm{BT}}\left(\mathrm{Th}_{\mathrm{uH}}(\mathbb{M})\right)
$$

Examples

- The cyclic group $\mathbb{C}_{n}=\left\langle C_{n} ; \cdot,^{-1}, 1\right\rangle$ is standard:
- $\mathrm{ISP}^{+}\left(\mathbb{C}_{n}\right)$ is the class of abelian groups satisfying $x^{n}=1$, and
- $\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}\left(\left(\mathbb{C}_{n}\right)_{\mathcal{T}}\right)$ is the class of Boolean topological abelian groups satisfying $x^{n}=1$.
- The two-element chain $2=\langle\{0,1\} ; \leqslant\rangle$ is not standard:
- $\operatorname{ISP}^{+}(2)$ is the class of ordered sets, while
- $\mathrm{IS}_{\mathrm{c}} \mathrm{P}^{+}\left(\mathcal{Z}_{\mathcal{T}}\right)$ is the class of Priestley spaces, which is not the class of Boolean topological ordered sets (Stralka 80).

Standard structures

- After its introduction in 2003, standardness became a study in its own right, independent of duality theory.

Standard structures

- After its introduction in 2003, standardness became a study in its own right, independent of duality theory.
- In Paper 3, co-authored with Ralph, we found a surprising connection between two purely algebraic conditions on a finite algebra and the topological condition of standardness.

Finitely Determined Syntactic Congruences (FDSC)

Definition

- Let \mathbf{A} be an algebra and let θ be an equivalence relation on A.

Finitely Determined Syntactic Congruences (FDSC)

Definition

- Let \mathbf{A} be an algebra and let θ be an equivalence relation on A.
- Let T_{x} be the set of all terms in the signature of \mathbf{A} and variables x, z_{1}, z_{2}, \ldots, and let $F \subseteq T_{x}$. Define θ_{F} by $(a, b) \in \theta_{F}$ if and only if

$$
(\forall f \in F)(\forall \vec{c} \in A) \quad\left(f^{\mathbf{A}}(a, \vec{c}), f^{\mathbf{A}}(b, \vec{c})\right) \in \theta
$$

Finitely Determined Syntactic Congruences (FDSC)

Definition

- Let \mathbf{A} be an algebra and let θ be an equivalence relation on A.
- Let T_{x} be the set of all terms in the signature of \mathbf{A} and variables x, z_{1}, z_{2}, \ldots, and let $F \subseteq T_{x}$. Define θ_{F} by $(a, b) \in \theta_{F}$ if and only if

$$
(\forall f \in F)(\forall \vec{c} \in A) \quad\left(f^{\mathbf{A}}(a, \vec{c}), f^{\mathbf{A}}(b, \vec{c})\right) \in \theta
$$

- $\operatorname{Syn}(\theta):=\theta_{T_{X}}$ is the largest congruence on \mathbf{A} contained in θ and is called the syntactic congruence of θ.

Finitely Determined Syntactic Congruences (FDSC)

Definition

- Let \mathbf{A} be an algebra and let θ be an equivalence relation on A.
- Let T_{x} be the set of all terms in the signature of \mathbf{A} and variables x, z_{1}, z_{2}, \ldots, and let $F \subseteq T_{x}$. Define θ_{F} by $(a, b) \in \theta_{F}$ if and only if

$$
(\forall f \in F)(\forall \vec{c} \in A)\left(f^{\mathbf{A}}(a, \vec{c}), f^{\mathbf{A}}(b, \vec{c})\right) \in \theta
$$

- $\operatorname{Syn}(\theta):=\theta_{T_{x}}$ is the largest congruence on \mathbf{A} contained in θ and is called the syntactic congruence of θ.
- A class \mathcal{K} of algebras has Finitely Determined Syntactic Congruences if there is a finite subset F of T_{x} such that $\operatorname{Syn}(\theta):=\theta_{F}$, for every equivalence relation θ on every algebra in \mathcal{K}.

Term Finite Principal Congruences (TFPC)

Definition

- Let \mathbf{A} be an algebra and let $a, b \in A$.

Term Finite Principal Congruences (TFPC)

Definition

- Let \mathbf{A} be an algebra and let $a, b \in A$.
- Let $F \subseteq T_{x}$. Define $C_{F}^{\mathbf{A}}(a, b)$ by $(c, d) \in C_{F}^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_{1}, \ldots, f_{k} \in F$ and $\vec{e}_{1}, \ldots, \vec{e}_{k}$ in A,

$$
\begin{aligned}
c & =f_{1}^{\mathbf{A}}\left(d_{1}, \vec{e}_{1}\right) \\
f_{1}^{\mathbf{A}}\left(d_{1}^{\prime}, \vec{e}_{1}\right) & =f_{2}^{\mathbf{A}}\left(d_{2}, \vec{e}_{2}\right) \\
& \vdots \\
f_{k}^{\mathbf{A}}\left(d_{k}^{\prime}, \vec{e}_{k}\right) & =d
\end{aligned}
$$

where $\left\{d_{i}, d_{i}^{\prime}\right\}=\{a, b\}$, for $i=1, \ldots, k$.

Term Finite Principal Congruences (TFPC)

Definition

- Let \mathbf{A} be an algebra and let $a, b \in A$.
- Let $F \subseteq T_{x}$. Define $C_{F}^{\mathbf{A}}(a, b)$ by $(c, d) \in C_{F}^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_{1}, \ldots, f_{k} \in F$ and $\vec{e}_{1}, \ldots, \vec{e}_{k}$ in A,

$$
\begin{aligned}
c & =f_{1}^{\mathbf{A}}\left(d_{1}, \vec{e}_{1}\right) \\
f_{1}^{\mathbf{A}}\left(d_{1}^{\prime}, \vec{e}_{1}\right) & =f_{2}^{\mathbf{A}}\left(d_{2}, \vec{e}_{2}\right) \\
& \vdots \\
f_{k}^{\mathbf{A}}\left(d_{k}^{\prime}, \vec{e}_{k}\right) & =d
\end{aligned}
$$

where $\left\{d_{i}, d_{i}^{\prime}\right\}=\{a, b\}$, for $i=1, \ldots, k$.

- Clearly, $C_{F}^{\mathbf{A}}(a, b) \subseteq C^{\mathbf{A}}(a, b)$.

Term Finite Principal Congruences (TFPC)

Definition

- Let \mathbf{A} be an algebra and let $a, b \in A$.
- Let $F \subseteq T_{x}$. Define $C_{F}^{\mathbf{A}}(a, b)$ by $(c, d) \in C_{F}^{\mathbf{A}}(a, b)$ if and only if, for some choice of $f_{1}, \ldots, f_{k} \in F$ and $\vec{e}_{1}, \ldots, \vec{e}_{k}$ in A,

$$
\begin{aligned}
c & =f_{1}^{\mathbf{A}}\left(d_{1}, \vec{e}_{1}\right) \\
f_{1}^{\mathbf{A}}\left(d_{1}^{\prime}, \vec{e}_{1}\right) & =f_{2}^{\mathbf{A}}\left(d_{2}, \vec{e}_{2}\right) \\
& \vdots \\
f_{k}^{\mathbf{A}}\left(d_{k}^{\prime}, \vec{e}_{k}\right) & =d,
\end{aligned}
$$

where $\left\{d_{i}, d_{i}^{\prime}\right\}=\{a, b\}$, for $i=1, \ldots, k$.

- Clearly, $C_{F}^{\mathbf{A}}(a, b) \subseteq C^{\mathbf{A}}(a, b)$.
- A class \mathfrak{K} of algebras has Term Finite Principal Congruences if there is a finite subset F of T_{x} such that $C_{F}^{\mathbf{A}}(a, b)=C_{g}^{\mathbf{A}}(a, b)$, for all a, b in every algebra \mathbf{A} in \mathcal{K}.

FDSC = TFPC

Theorem

- Let \mathbf{A} be an algebra and let $F \subseteq T_{x}$. Then F determines syntactic congruences on \mathbf{A} if and only if F determines principal congruences on \mathbf{A}.

FDSC = TFPC

Theorem

- Let \mathbf{A} be an algebra and let $F \subseteq T_{x}$. Then F determines syntactic congruences on \mathbf{A} if and only if F determines principal congruences on \mathbf{A}.
- A class \mathfrak{K} of algebras has FDSC if and only if it has TFPC.

FDSC = TFPC

Theorem

- Let \mathbf{A} be an algebra and let $F \subseteq T_{x}$. Then F determines syntactic congruences on \mathbf{A} if and only if F determines principal congruences on \mathbf{A}.
- A class \mathcal{K} of algebras has FDSC if and only if it has TFPC.
- If a variety has DPC, then it has TFPC and therefore has FDSC.

FDSC = TFPC

Theorem

- Let \mathbf{A} be an algebra and let $F \subseteq T_{x}$. Then F determines syntactic congruences on \mathbf{A} if and only if F determines principal congruences on \mathbf{A}.
- A class \mathfrak{K} of algebras has FDSC if and only if it has TFPC.
- If a variety has DPC, then it has TFPC and therefore has FDSC.

Algebras with FDSC (= TFPC)

- Monoids: $F=\left\{z_{1} x z_{2}\right\}$.
- Every finitely generated variety of unary algebras.
- Groups: $F=\left\{z_{1} x z_{2}, z_{1} x^{-1} z_{2}\right\}$.
- Semigroups: $F=\left\{x, z_{1} x, x z_{2}, z_{1} x z_{2}\right\}$
- Every finitely generated variety of lattices.

FDSC = TFPC: examples continued
Algebras without FDSC (= TFPC)

FDSC = TFPC: examples continued

Algebras without FDSC (= TFPC)

- If a variety \mathcal{v} contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then \mathcal{V} does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.

FDSC = TFPC: examples continued

Algebras without FDSC (= TFPC)

- If a variety \mathcal{V} contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then \mathcal{V} does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.
- McKenzie's algebra $\mathbf{A}(\mathcal{T})$ generates a variety without FDSC in the case that the Turing machine \mathcal{T} does not halt.
(The algebra \mathbf{Q}_{ω} constructed by McKenzie
 is SI and has a compatible Boolean topology.)

FDSC = TFPC: examples continued

Algebras without FDSC (= TFPC)

- If a variety \mathcal{V} contains an infinite subdirectly irreducible algebra that has a compatible Boolean topology, then \mathcal{v} does not have FDSC.
- The variety of modular lattices, and therefore the variety of lattices, does not have FDSC.
- McKenzie's algebra $\mathbf{A}(\mathcal{T})$ generates a variety without FDSC in the case that the Turing machine \mathcal{T} does not halt.
(The algebra \mathbf{Q}_{ω} constructed by McKenzie
 is SI and has a compatible Boolean topology.)
- In a recent preprint, Nurakunov, Stronkovski (2018) prove that it is undecidable whether a finite algebra generates a variety with FDSC. They use using the algebra $\mathbf{A}^{\prime}(\mathcal{T})$ constructed by Moore (2015).

The surprising connection

FDSC-HSP Theorem
Let $\mathbb{M}=\langle M ; G\rangle$ be a finite algebra. Assume that

- $\operatorname{HSP}(\mathbb{M})$ has FDSC, and
- $\operatorname{HSP}(\mathbb{M})=\operatorname{ISP}(\mathbb{M})$.

Then \mathbb{M} is standard and hence $\mathrm{IS}_{\mathrm{C}} \mathrm{P}^{+}\left(\mathbb{M}_{\mathcal{T}}\right)=\operatorname{Mod} \mathrm{MT}_{\mathrm{BT}}\left(\operatorname{Th}_{\mathrm{uH}}(\mathbb{M})\right)$.

Outline

- A survival guide to natural dualities
- Paper 1: Davey, Nation, McKenzie and Pálfy (1994) A beautiful theorem
- Paper 2: Davey, Idziak, Lampe, McNulty (2000) Four open problems
- Paper 3: Clark, Davey, Freese, Jackson (2004) A surprising connection
- Bonus: A further surprising connection (2018) Lifting full dualities from the finite level

Lifting full dualities from the finite level

- Let \mathbf{M} be a finite algebra and let $\mathbb{M}=\langle M ; G, R, \mathcal{T}\rangle$ be an alter ego of \mathbf{M} with $G \cup R$ finite (and $H=\varnothing$).
If \mathbb{M} yields a full duality between $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$, then \mathbb{M} yields a full duality between \mathcal{A} and \mathcal{X}. (Hofmann 02)
- Let $\mathbf{3}=\langle\{0, a, 1\} ; \vee, \wedge, 0,1\rangle$ be the three-element chain and let $\mathcal{B}:=\langle\{0, a, 1\} ; f, g, h, \mathcal{T}\rangle$, where

- The alter ego B
- yields a duality between $\mathcal{D}=\operatorname{ISP}(\mathbf{3})$ and $\mathcal{X}:=I \mathrm{~S}_{\mathrm{c}} \mathrm{P}^{+}(\mathcal{B})$,
- yields a full duality between $\mathcal{D}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$,
- but does not yield a full duality between \mathcal{D} and \mathcal{X}.
(Davey, Haviar and Willard 05)

A further surprising connection

Full dualities and standardness

Davey, Pitkethly, Willard (2018) found a surprising connection between full dualities and standardness.

Theorem
Let \mathbf{M} be a finite algebra, let $\mathcal{A}=\operatorname{ISP}(\mathbf{M})$ and let \mathbb{M}_{1} and \mathbb{M}_{2} be alter egos of M. Assume that

- \mathbb{M}_{1} yields a full duality between \mathcal{A} and \mathcal{X}_{1},
- \mathbb{M}_{1} is standard, and
- \mathbb{M}_{2} yields a full duality between $\mathcal{A}_{\text {fin }}$ and $\left(\mathcal{X}_{2}\right)_{\text {fin }}$.

Then \mathbb{M}_{2} yields a full duality between \mathcal{A} and X_{2} and \mathbb{M}_{2} is standard.

Quasi-primal algebras

Every alter ego of a quasi-primal algebra that yields a full duality at the finite level yields a full duality and is standard.

