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Is supernilpotence = nilpotence + ε?

Today, “nilpotence” refers to nilpotence in the sense of the binary
commutator, e.g. [[β, β], β] = 0.

The word “supernilpotence” was introduced with a commutator-theoretic
meaning in a 2006 paper of Aichinger and Ecker. They defined an expanded
group to be “supernilpotent” if it has a bound on the rank of nontrivial
commutator words.

Meaning. For a group G, [[x1, x2], x3] reduces to 1 if any xi is set equal to 1.
Hence w(x1, x2, x3, z) = [[(x1/z), (x2/z)], (x3/z)]z reduces to z if any xi is set
equal to z. This makes w(x1, x2, x3, z) a commutator word of rank 3. If
G |= w(x1, x2, x3, z) ≈ z, then it is a trivial commutator word for G.

Examples. Nilpotent groups. Algebras of bounded essential arity.

Question for today: Is the word “supernilpotent” a good choice for this
concept?
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Silly answer: Yes.

Supernilpotence Theorem
Supernilpotence is stronger than nilpotence.

Proof by Social Media:
The Twitter user ‘@nilpotent’ has one follower. (User since 2009.)
The Twitter user ‘@supernilpotent’ has two followers. (User since
2012.)
2 > 1.
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Less silly answer: No.

“Supernilpotent” has been in use, with a different meaning, since 1957.
(“Supernilpotent radical” of a ring.)

Here, the implication goes the other way: Nilpotence implies supernilpotence,
but the converse fails.
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How did this start?

Q’s: What did the originators mean by nilpotence?

When did supernilpotence
become visible as a separate concept?

Nilpotent (from Latin: “nil potens” = “not hav-
ing any power”) is a deliberately created word. It

was introduced into mathematics by B. Peirce.

Linear Associative Algebra, 1870.

His goal was to classify nonunital associative R-algebras
of dimension at most 6.

Peirce defined an element A to be nilpotent if
“∃n ≥ 2(An = 0)”.

Interestingly, Peirce also originated idempotent (“having same power”), but he
meant “∃n ≥ 2(An = A)”.
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Nilpotence in groups

Alfredo Capelli initiated the study of Ω0 groups: finite
groups with one Sylow p-subgroup for each p (i.e., finite
groups that are products of prime-power order groups).

Capelli was trying to determine the size of the smallest
supplement of a normal subgroup N � G. He observed
that N � G has no proper supplement ⇔ N is contained
in all maximal subgroups⇒ N is an Ω0 group. (I.e., the
Frattini subgroup is nilpotent.) Capelli was the inventor
of “the Frattini argument”. He also proved that Ω0 groups
are exactly the finite groups with the normalizer property.

Capelli’s paper appeared in 1884, 12 years before the group commutator was
introduced.
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introduced.
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Nilpotence in loops

R. H. Bruck used commutator words to define first the “center” of a loop, then
to define “centrally nilpotent” loops.

It was seen that centrally nilpotent loops need not be products of prime power
order loops, and that loops of prime power order need not be centrally
nilpotent.

However, (Bruck’s students) G. Glauberman and C. Wright proved that
centrally nilpotent Moufang loops are products of prime power order loops,
and that prime power order Moufang loops are centrally nilpotent.
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Supernilpotence in loops

The translation group ML of a loop L is the subgroup of Sym(L) generated by
all left translation x 7→ ax and right translations x 7→ xb.

In 1967, C. Wright proved

Theorem
A nilpotent loop factors as a product of nilpotent loops of prime power order
if and only if its multiplication group is nilpotent.

In hindsight, it was just becoming visible that, for loops,

“nilpotent” = “centrally nilpotent”

“supernilpotent” = “nilpotent + multiplication group is also nilpotent”.
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Supernilpotence in Maltsev algebras

Let A be a nilpotent algebra with a Maltsev term m(x, y, z) and an element
0 ∈ A. The right translation group R(A) of A is the subgroup of Sym(A)
generated by all x 7→ x + a = m(x, 0, a).

In 1983, M. Vaughan-Lee proved

Theorem
A nilpotent Maltsev algebra factors as a product of nilpotent algebras of
prime power order if and only if its right translation group is nilpotent.

So for Maltsev algebras
“nilpotent” = “nilpotent in the sense of commutator theory”

“supernilpotent” = “nilpotent + right translation group is also nilpotent”.

(+Freese-McKenzie)
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The twin relation

Polynomials p(x) = t(x, a) and q(x) = t(x,b) are twins if they are derived
from the same term with possibly different parameters. They are β-twins if
a β b.

This concept is derived from the term condition: A is abelian in the sense of
the term condition iff twin polynomials have the same kernel. ([β, α] = 0 iff
α-twin polynomials have the same kernel on products of β-classes.)

The (β-)twin monoid of A is the submonoid of Pol1(A) consisting of
(β-)twins of the identity function.
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Comparison

Let S3 be the 6-element nonabelian group, which is a group, a loop and a
Maltsev algebra.

R(S3) ⊆MS3 ⊆ Tw(S3).

1 The multiplication group of S3 is isomorphic to S3 × S3.

2 The Vaughan-Lee translation group with respect to m(x, y, z) = xy−1z
and 1 is isomorphic to S3.

3 The twin monoid of S3 is not even a group.

Note. Two groups defined on the same set and having the same clone can
have nonisomorphic multiplication groups and nonisomorphic translation
groups, but must have isomorphic twin monoids.
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Supernilpotence in f.g. varieties omitting types 1 and 5

Theorem
Let A be a finite algebra in a variety that omits types 1 and 5. TFAE:

1 A has a finitely generated clone and factors as a product of prime power
order nilpotent algebras.

2 A has a bound on the rank of commutator terms.
3 There is no doubly exponential function d(n) such that A has at least

d(n)-many inequivalent k-ary terms for each k.
4 A has a finitely generated clone, is nilpotent and its twin monoid is a

nilpotent group.

(1)⇒(2): Vaughan-Lee, Freese-McKenzie.
(2)⇒(3): Blok-Berman.
(3)⇒(4)⇒(1): Kearnes.
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Examples

1 A group is nilpotent iff it is supernilpotent.

2 Any algebra of bonded essential arity, like a rectangular band, is
supernilpotent.

3 〈Z6; +,−, 0, f 〉 with f (even) = 0, f (odd) = 2 is nilpotent, Maltsev, but
not supernilpotent.

4 〈Z4; +,−, 0, {2x1x2 · · · xk|k ∈ ω}〉 is nilpotent, Maltsev, of prime power
order, not supernilpotent.
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Higher Commutator Theory

Nontrivial commutator words, w(x1, x2, x3, z), are related to almost-constant
hypercubes. Assume w(a, b, c, d) 6= d, but if any of a, b, c is set equal to d the
result is d. Then w yields an almost-constant d-matrix.

w(a, d, d, d)

w(a, d, c, d)

w(d, d, d, d) w(d, b, d, d)

w(d, b, c, d)

w(a, b, c, d) 6= d
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α, β, γ-Cubes

We can create cubes even from terms that are not commutator words.
Consider t(x, y, z) and tuples a α a′, b β b′, c γ c′.

t(a,b′, c′)

t(a,b′, c)

t(a′,b′, c′) t(a′,b, c′)

t(a′,b, c)

t(a,b, c)
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Cubes

There are several conditions one can impose on allowed patterns of equalities
that rule out almost-constant cubes, hence rule out commutator words of high
arity.
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Definition of supernilpotence changed

In 2010, Aichinger and Mudrinski changed the definition of supernilpotence
from “a bound on the rank of commutator words” to “[1, 1, . . . , 1] = 0 for the
Bulatov higher commutator”.

This only makes a difference for the most pathological algebras, and for these
the new definition is stronger and easier to relativize.
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Supernilpotence implies nilpotence for finite algebras

Theorem
Let A be a finite algebra, β ∈ Con(A). (1)⇒(2)⇒(3)⇒(4)⇒(5)

(1) β is k-step supernilpotent.

(2) M(β, . . . , β) (k + 1 β’s) has no almost-constant hypercube.

(3) The β-twin monoid on any minimal set is a nilpotent group of class at
most k.

(4) [β, θ] ≤ δ and [θ, β] ≤ δ whenever δ ≺ θ ≤ β.

(5) β is both left and right nilpotent.

Thus, supernilpotence implies nilpotence for any congruence of a finite
algebra.
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Supernilpotence is forced on us

Theorem (Berman, Idziak)
V f.g. variety omitting 1. The number of isotypes of k-gen. algebras is
bounded by 2poly(k) iff V is Maltsev and every SI of V is supernilpotent or is
. . . (‘nearly abelian’).

Theorem (Bentz, Mayr)
If A is supernilpotent and not abelian, then A is not dualizable. (False if
“supernilpotence” is replaced by “nilpotence”.)

Theorem (Kearnes, Mayr, Ruskuc)
If A generates a congruence modular variety, then any join-semidistributivity
failure in Con(A) is supernilpotent. Any supernilpotence class is possible.

Theorem (Idziak, Krzaczkowski)
The complexity of circuit satisfiability over A is related to supernilpotence.
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