A Primer of Subquasivariety Lattices

Kira Adaricheva, Jennifer Hyndman, J. B. Nation, Joy N. Nishida

Hofstra University, UNBC, University of Hawai'i

University of Hawai'i at Mānoa, May 2018

- Properties of subquasivariety lattices
- Representation theorems
- Equaclosure operators revisited: new restrictions
- A construction project
- Problems

A subquasivariety lattice $L_q(\ensuremath{\mathbb{K}})$ has the following properties:

- dually algebraic
- join semi-distributive *Jónsson-Kiefer property*
- atomic
- equaclosure operators

Let **S** be an algebraic lattice.

- A subset X ⊆ S is an algebraic subset if it contains 1_S and is closed under arbitrary meets and nonempty directed joins.
- An operator h: S → S is continuous if it preserves 1_s, arbitrary meets and nonempty directed joins.

If *H* is a monoid of continuous operators on **S**, then $S_p(\mathbf{S}, H)$ denotes the lattice of all *H*-closed algebraic subsets of **S**, ordered by inclusion.

Hoehnke, AN, HNN

For a quasivariety \mathcal{K} , the lattice $L_q(\mathcal{K})$ is isomorphic to the lattice $S_p(\mathbf{S}, H)$ where

- $\mathbf{S} = \operatorname{Con}_{\mathcal{K}} \mathbf{F}_{\mathcal{K}}(\omega)$
- $H = \mathcal{E}^*$ are maps derived from endomorphisms.

- If \mathcal{K} is a quasivariety, then $L_q(\mathcal{K}) \cong S_p(\mathbf{S}, H)$ for an \mathbf{S}, H
- If **L** is finite distributive lattice, then $\mathbf{L} \cong L_q(\mathcal{K})$
- If L is a distributive dually algebraic lattice, then L ≅ S_p(S, H)
- $(\omega + 1)^d \not\cong L_q(\mathcal{K})$
- If $\mathbf{L} \cong S_p(\mathbf{S}, H)$, then $1 + \mathbf{L} \cong L_q(\mathcal{K})$

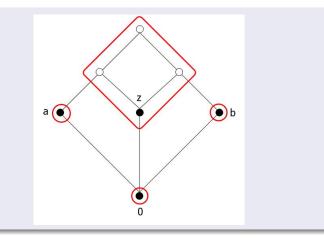
Classical properties of equaclosure operators (DAG)

Let L be a dually algebraic lattice.

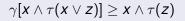
Define τ

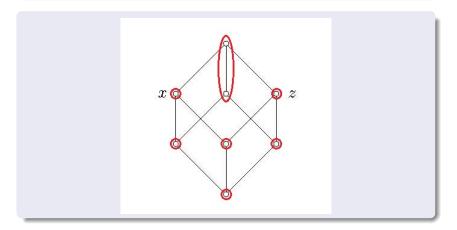
• (I5) defines $\tau(x)$ abstractly

•
$$\tau(a \lor b) \leq \tau(a) \lor \tau(b)$$



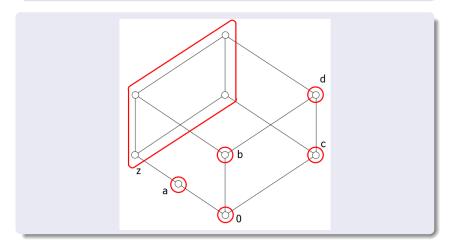
Adaricheva, Hyndman, Nation, Nishida Primer of Subquasivariety Lattices





Condition (K10)

$\tau b \leq \tau d \And \gamma c \leq \gamma d \leq \gamma (a \lor c) \And c \land \gamma (b) \leq \gamma a \to \gamma b \leq \gamma a$

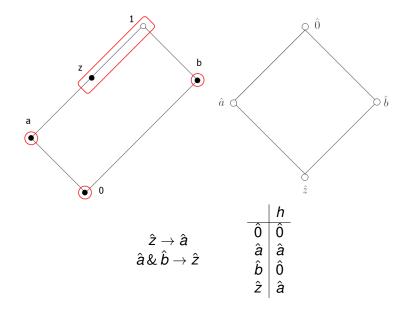


Given a pair (\mathbf{L} , γ) with \mathbf{L} a finite lower bounded lattice and γ satisfying the known properties of natural equaclosure operators, can we represent \mathbf{L} as

- S_p(**S**, *H*)
- $L_q(\mathcal{K})$ for a quasivariety of structures

with γ corresponding to the natural equaclosure operator?

Six-step program - Step 1: $\mathbf{L} = \text{Sub}(\mathbf{S}, \wedge, \hat{\mathbf{0}}, h)$



Convert Sub(\mathbf{S} , \wedge , $\hat{\mathbf{0}}$, h) to $L_q(\mathcal{K}_0)$ in a language without equality.

 \mathcal{K}_0 has the operations *e*, μ and predicates *O*, *A*, *B* with laws

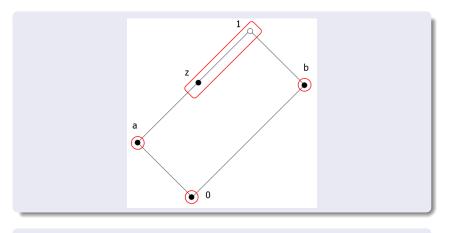
Convert \mathcal{K}_0 to a quasivariety \mathcal{K}_1 with equality (if possible) by interpreting O(x) as $x \approx e$.

 \mathfrak{K}_1 has the operations e, μ and a predicate A with laws

$$egin{aligned} & A(e) & \mu e pprox e \ \mu^2 x &pprox \mu x & A(\mu x) \ A(x) \& \mu x &pprox e
ightarrow x &pprox e \ A(x) &
ightarrow \mu x &pprox x \end{aligned}$$

With the interpretation $A(x) \mapsto \mu x \approx x$ we obtain an equivalent quasivariety \mathcal{K}_2 with operations *e*, μ and the laws

 $\mu \boldsymbol{e} \approx \boldsymbol{e}$ $\mu^2 \boldsymbol{x} \approx \mu \boldsymbol{x}$



0: $x \approx e$ a: $\mu x \approx x$ b: $\mu x \approx e$ z: $\mu x \approx e \rightarrow x \approx e$ 1: $\mu e \approx e$, $\mu^2 x \approx \mu x$ Let (\mathbf{L}, γ) be a finite, lower bounded lattice with a weak equaclosure operator. If (\mathbf{L}, γ) satisfies $J \subseteq T$, then (\mathbf{L}, γ) has a representation as $S_p(\mathbf{S}, H)$ if and only if there exists a set of operators H^* on $\gamma(\mathbf{L})$ satisfying the conditions below. If such a set of operators exists, then $\mathbf{L} \cong \text{Sub}(\gamma(\mathbf{L}), 0, \lor, H^*)$.

1
$$h^*[a] \leq [a].$$

$$2 \tau h^*[a] \le \tau[a].$$

3
$$h^*[0] = [0].$$

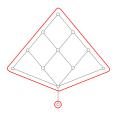
•
$$[c] \le [d]$$
 implies $h^*[c] \le h^*[d]$.

$$\bullet h^*(\bigvee_i[r_i]) = \bigvee_i h^*[r_i].$$

• $\tau[a] \leq \tau[b]$ implies there exists $k \in \mathbb{DMO}$ such that $k^*[b] = [a]$.

Problems

- Find more restrictions on pairs (\mathbf{L}, γ) to be representable.
- Finish the construction project.
- Decide the test cases: Can you represent Fin(X) + 1 as $S_p(\mathbf{S}, H)$, where X is an infinite set?
- Can you represent the leaf 1 + Co(4) as L_q(K) in a language with equality?



MAHALO!