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Properties of subquasivariety lattices

A subquasivariety lattice Lq(K) has the following properties:
dually algebraic
join semi-distributive - Jónsson-Kiefer property
atomic
equaclosure operators
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Terminology

Let S be an algebraic lattice.
A subset X ⊆ S is an algebraic subset if it contains 1S
and is closed under arbitrary meets and nonempty directed
joins.

An operator h : S → S is continuous if it preserves 1S,
arbitrary meets and nonempty directed joins.

If H is a monoid of continuous operators on S, then Sp(S,H)
denotes the lattice of all H-closed algebraic subsets of S,
ordered by inclusion.
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Representation theorem for quasivarieties

Hoehnke, AN, HNN
For a quasivariety K, the lattice Lq(K) is isomorphic to the
lattice Sp(S,H) where

S = ConK FK(ω)

H = E∗ are maps derived from endomorphisms.
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Main Results

If K is a quasivariety, then Lq(K) ∼= Sp(S,H) for an S,H
If L is finite distributive lattice, then L ∼= Lq(K)

If L is a distributive dually algebraic lattice, then
L ∼= Sp(S,H)

(ω + 1)d 6∼= Lq(K)

If L ∼= Sp(S,H), then 1 + L ∼= Lq(K)
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Classical properties of equaclosure operators (DAG)

Let L be a dually algebraic lattice.

(I1) x ≤ γ(x).
(I2) x ≤ y implies γ(x) ≤ γ(y).
(I3) γ2(x) = γ(x).
(I4) γ(0) = 0.
(I5) γ(x) = u for all x ∈ X implies γ(

∧
X ) = u.

(I6) γ(x) ∧ (y ∨ z) = (γ(x) ∧ y) ∨ (γ(x) ∧ z).
(I7) γ(L) is the complete meet subsemilattice of L generated by

γ(L) ∩ K , the semilattice of dually compact elements.
(I8) ∗There is a dually compact element w ∈ L such that

γ(w) = w and the interval [0,w ] is isomorphic to Sp(S) for
some algebraic lattice S.
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Define τ

(I5) defines τ(x) abstractly
τ(a ∨ b) ≤ τ(a) ∨ τ(b)
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Condition (K9)

γ[x ∧ τ(x ∨ z)] ≥ x ∧ τ(z)
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Condition (K10)

τb ≤ τd & γc ≤ γd ≤ γ(a ∨ c) & c ∧ γ(b) ≤ γa→ γb ≤ γa
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Construction project

Given a pair (L, γ) with L a finite lower bounded lattice and
γ satisfying the known properties of natural equaclosure
operators, can we represent L as

Sp(S,H)

Lq(K) for a quasivariety of structures
with γ corresponding to the natural equaclosure operator?
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Six-step program - Step 1: L = Sub(S,∧, 0̂,h)

ẑ → â
â& b̂ → ẑ

h
0̂ 0̂
â â
b̂ 0̂
ẑ â
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Steps 2–5 (routine): L = Lq(K0)

Convert Sub(S,∧, 0̂,h) to Lq(K0) in a language without equality.

K0 has the operations e, µ and predicates O, A, B with laws

P(e), P(µe) for P = O,A,B

P(µ2x)↔ P(µx) for P = O,A,B
O(x)→ A(x)

O(x)→ B(x)↔ B(µx)↔O(µx)
A(µx)
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Step 6: L = Lq(K1)

Convert K0 to a quasivariety K1 with equality (if possible) by
interpreting O(x) as x ≈ e.

K1 has the operations e, µ and a predicate A with laws

A(e) µe ≈ e

µ2x ≈ µx A(µx)
A(x)&µx ≈ e→ x ≈ e

A(x)→µx ≈ x
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Step 6 simplified: L = Lq(K2)

With the interpretation A(x) 7→ µx ≈ x we obtain an equivalent
quasivariety K2 with operations e, µ and the laws

µe ≈ e

µ2x ≈ µx
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Lq(K2)

0: x ≈ e a: µx ≈ x b: µx ≈ e z: µx ≈ e→ x ≈ e
1: µe ≈ e, µ2x ≈ µx
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J ⊆ T Theorem

Let (L, γ) be a finite, lower bounded lattice with a weak
equaclosure operator. If (L, γ) satisfies J ⊆ T , then (L, γ) has a
representation as Sp(S,H) if and only if there exists a set of
operators H∗ on γ(L) satisfying the conditions below. If such a
set of operators exists, then L ∼= Sub(γ(L),0,∨,H∗).

1 h∗[a] ≤ [a].
2 τh∗[a] ≤ τ [a].
3 h∗[0] = [0].
4 [c] ≤ [d ] implies h∗[c] ≤ h∗[d ].
5 h∗(

∨
i [ri ]) =

∨
i h∗[ri ].

6 τ [a] ≤ τ [b] implies there exists k ∈ DMO such that
k∗[b] = [a].
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Problems

Find more restrictions on pairs (L, γ) to be representable.
Finish the construction project.
Decide the test cases: Can you represent Fin(X ) + 1 as
Sp(S,H), where X is an infinite set?
Can you represent the leaf 1 + Co(4) as Lq(K) in a
language with equality?
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Thank you

MAHALO!
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