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What are they looking at?



The Grätzer–Schmidt Theorem

Theorem. (G. Grätzer∗ and E. T. Schmidt, 1963) For every
algebraic lattice L there exists an algebra A with Con(A) ∼= L.
∗ Grätzer was Bill’s thesis advisor at Penn State.

All known proofs of the Grätzer–Schmidt Theorem construct an
infinite algebra for (most) finite lattices: Grätzer and Schmidt,
1963; Lampe, 1973; Pudlák, 1976; Tůma, 1989.

So the problem arises:

Open Problem. Is every finite lattice isomorphic to the
congruence lattice of a finite algebra?



Cayley’s Theorem

Let G be group. One constructs a multi-unary algebra (G ;G )
where each operation g ∈ G is a permutation x 7→ xg (x ∈ G ).
This is the construction in Cayley’s Theorem:
Every (abstract) group is isomorphic to a permutation group.

What are the congruences of the multi-unary algebra (G ;G ) ?

Let ≡ be a congruence, e ∈ G the identity element, and H the
equivalence class of e.
H is a subgroup: If a, b ∈ H, then
(e ≡ a& b ≡ e)⇒ a−1b = e(a−1b) ≡ a(a−1b) = b ≡ e.
The congruence classes of ≡ are the right cosets of H:
x ≡ y ⇔ xy−1 ≡ yy−1 = e ⇔ xy−1 ∈ H ⇔ x ∈ Hy ⇔ Hx = Hy .
Hence Con(G ;G ) ∼= Sub(G ), the subgroup lattice of G .
Furthermore Con(G/ ≡H ;G ) ∼= Int(H,G ) = {X | H ≤ X ≤ G},
the interval between H and G in Sub(G ).



Reduction to finite groups

Assume that a finite lattice can be represented as Con(A;F ) for
some finite algebra. We will always take a smallest representation,
i.e., when |A| is minimal.

For lattices with some specific properties (simplicity, etc.) it can
be deduced that the smallest algebra (if there is any) with such a
congruence lattice is actually a multi-unary algebra equivalent to a
transitive permutation group, hence the congruence lattice is
isomorphic to Int(H,G ) for a finite group G and a subgroup H.

Since every finite lattice can be embedded as an interval into a
finite lattice with the required properties, we have the first
reduction theorem:



P5

Theorem. (P3 and P. Pudlák, 1980) The following statements are
equivalent:
(1) Every finite lattice is isomorphic to the congruence lattice of a
finite algebra.
(2) For every finite lattice L there exist a finite group G and a
subgroup H such that the interval sublattice
Int(H,G ) = {X | H ≤ X ≤ G} in the subgroup lattice of G is
isomorphic to L.

Note that in case when these statements are false, we do not claim
that every congruence lattice of a finite algebra can be represented
as an interval in the subgroup lattice of a finite group.



Further reduction

Main Theorem. (mainly due to Ferdinand Börner, 1999;
similar ideas are contained in papers of R. Baddeley, A. Lucchini,
J. Shareshian, M. Aschbacher)

The following statements are equivalent:
(2) Every finite lattice can be represented as an interval Int(H,G ),
where G is a finite group and H is a subgroup of G .

(3)
either (3a) every finite lattice can be represented as an interval
Int(H,G ) where G is a finite almost simple group, and H is a
core-free subgroup of G .
or (3b) every finite lattice can be represented as an interval
Int(H,G ) where G is a twisted wreath product with ingredients
H, T , H1 < H, ϕ : H1 → Aut(T ),
where H is a finite group, T is a finite non-abelian simple group,
H1 is a core-free subgroup of H, and ϕ(T1) contains all inner
automorphisms of T .
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Almost simple groups

(3a) every finite lattice can be represented as an interval Int(H,G )
where G is a finite almost simple group, and H is a core-free
subgroup of G .

A group G is almost simple, if it has a simple normal subgroup S
with trivial centralizer CG (S) = 1.
Conjugation by elements of G yield automorphisms of S , so we get
an embedding G → Aut(S). The image contains all inner
automorphisms of S , i.e., (up to isomorphism)

S ∼= Inn(S) ≤ G ≤ Aut(S).

Reduction to almost simple groups is a standard method in group
theory. After that one tries to solve the problem for the various
types of finite simple groups, relying on the Classification of
Finite Simple Groups (CFSG).



The Schreier Hypothesis

In our case the reduction itself uses the CFSG through one of its
best known consequences, the Schreier Hypothesis stating that
the outer automorphism group

Out(S) = Aut(S)/Inn(S)

of any finite simple group S is a solvable group.

The core of a subgroup H < G is the largest normal subgroup of
G contained in H, namely ⋂

g∈G
g−1Hg .

H is core-free, if
⋂

g∈G g−1Hg = 1.



The standard wreath product

Ingredients:
D — finite group (“domain”)
T — arbitrary group (often non-abelian simple) (“target”)

F = all functions f : D → T with pointwise multiplication,
F ∼= T |D|

D acts on F by f d(x) = f (xd−1)

Indeed, f d1d2(x) = f (x(d1d2)−1) = f ((xd−12 )d−11 ) = f d1(xd−12 ) =
(f d1)d2(x).

The semidirect product F o D is the standard wreath product
T o D.



Subdirect products of simple groups

A subgroup H ≤ G1 × G2 × · · · × Gn is a subdirect product if all
projections H → Gi (i = 1, 2 . . . , n) are surjective.

Lemma. Let T be a non-abelian simple group, and let H ≤ T n be
a subdirect product. Then H ∼= Tm for some 1 ≤ m ≤ n.
Moreover, there is a map ν : {1, . . . , n}� {1, . . . ,m} and
automorphisms ϕi ∈ Aut(T ) such that f : {1, . . . , n} → T belongs

to H iff f (i) = ϕi (tν(i)) with t1, . . . , tm ∈ T .

An example: H = {(t1, ϕ2(t1), t2, ϕ4(t1), t2) | t1, t2 ∈ T} < T 5.

So there is a partition I1 ∪ · · · ∪ Im = {1, . . . , n} and for each class
a parameter tj ∈ T such that the coordinates for elements of H
corresponding to the indices in the class Ij are determined by tj ,
namely, they are images of tj under a suitable automorphism of T ,
that is fixed independently for each coordinate.



D-invariant subgroups of F (1)

Question. Assume that T is a non-abelian simple group.
What are the D-invariant subdirect products in F ∼= T |D| ?

Let H be a D-invariant subdirect product determined by
ν : D � {1, . . . ,m} and ϕx ∈ Aut(T ) (x ∈ D).
Then f ∈ H iff ∀x ∈ D : f (x) = ϕx(tν(x)).

Let us fix b ∈ D, then by the invariance of H we have f b
−1 ∈ H,

i.e., ∀x ∈ D : f b
−1

(x) = ϕx(uν(x)) with u1, . . . , um ∈ T .
The partition corresponding to ν is invariant under right
translations by elements of D, hence it is a partition into right
cosets of some subgroup D1, so D = D1x1 ∪ D1x2 ∪ · · · ∪ D1xm
with ν(d) = i iff d ∈ D1xi .
W.l.o.g. x1 = 1 (so ν(1) = 1) and ϕxi = id for each i = 1, . . . ,m.



D-invariant subgroups of F (2)

Let us assume that b ∈ D1xi and a ∈ D1, so ab ∈ D1xi as well.
Then f (ab) = f b

−1
(a) = ϕa(uν(a)) = ϕa(u1). For a = 1 this yields

u1 = f (b), hence ∀a ∈ D1, ∀b ∈ D : f (ab) = ϕa(f (b)) .

For b = 1 it yields ∀a ∈ D1 : f (a) = ϕa(f (1)).
If a, b ∈ D1, then ϕab(f (1)) = f (ab) = ϕa(f (b)) = ϕa(ϕb(f (1))).
Since H is a subdirect product, f (1) can be any element of T , so
ϕ : D1 → Aut(T ) is a homomorphism.
Furthermore, ϕaxi (ti ) = f (axi ) = ϕa(f (xi )) = ϕa(ti ), so
∀a ∈ D1,∀i ∈ {1, . . . ,m} : ϕaxi = ϕa.

Conversely, it is easy to verify that if D1 ≤ D,
D = D1x1 ∪ · · · ∪ D1xm, and ϕ : D1 → Aut(T ) is a
homomorphism, then
H = {f : D → T | f (axi ) = ϕa(ti ), a ∈ D1, ti ∈ T (i = 1, . . . ,m)}
is a D-invariant subdirect product in F ∼= T |D|.
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Twisted wreath products (d’après Suzuki)

Introduced by B. H. Neumann in 1963

Ingredients:
D — (finite) group
T — arbitrary group
D1 ≤ D — a subgroup of D
ϕ : D1 → Aut(T ) — a homomorphism into the automorphism
group of T

F1 = {f : D → T | ∀x ∈ D1, y ∈ D : f (xy) = ϕx(f (y)) }
F1 ∼= T |D:D1|: Choose representatives of right cosets
D = D1y1 ∪ · · · ∪ D1ym and for d ∈ D1 let f (dyi ) = ϕd(ti ). If
x ∈ D1, then f (x(dyi )) = ϕxd(ti ) = ϕx(ϕd(ti )) = ϕx(f (dyi )), so
f ∈ F1.
F1 is invariant under the action of D, since for any b ∈ D, if
f ∈ F1, x ∈ D1, y ∈ D, then
f b(xy) = f (xyb−1) = ϕx(f (yb−1)) = ϕx(f b(y)), so f b ∈ F1.

The twisted wreath product is the semidirect product F1 o D.



A problem for group theorists

Open Problem. Is every finite lattice isomorphic to an interval in
the subgroup lattice of a finite group?

Theorem. (J. Tůma, 1989) For every algebraic lattice (in
particular, for every finite lattice) L there exist an infinite group G
and a subgroup H such that Int(H,G ) ∼= L.

If F ⊂ E is a finite, separable field extension and F ⊂ E ⊂ E ∗ is
the smallest Galois extension then the lattice of intermediate fields
{X | F ⊆ X ⊆ E} is dually isomorphic to
Int(Gal(E ∗|E ),Gal(E ∗|F )).
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Operator algebras
Open Problem. Is every finite lattice isomorphic to the lattice of
intermediate subfactors of a von Neumann algebra?

Theorem. (Y. Watatani, 1996) If a lattice can be represented as
an interval in a subgroup lattice of a finite group, then it also
occurs as a lattice of intermediate subfactors of a von Neumann
algebra.

For example, is the hexagon lattice isomorphic to the lattice of
intermediate subfactors of a von Neumann algebra?
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Subgroups of twisted wreath products (1)

Let G = F1 o D be a twisted wreath product with ingredients
satisfying the following assumptions:
D — a finite group
T — a finite non-abelian simple group
D1 — a subgroup of D
ϕ : D1 → Aut(T ) — a homomorphism such that ϕ(D1) ≥ Inn(T )
Note that Inn(T ) ∼= T is the unique minimal normal subgroup of
Aut(T ).

We are going to determine Int(D,G ). If D ≤ X ≤ G , then
X = (F1 ∩ X )D and F1 ∩ X is a D-invariant subgroup. Conversely,
if H ≤ F1 is D-invariant, then D ≤ HD ≤ G . Thus
Int(D,G ) ∼= SubD(F1), the lattice of D-invariant subgroups of F1.



Subgroups of twisted wreath products (2)

Let H ≤ F1 be a D-invariant subgroup. Denote by U ≤ T the
projection of H to the first component, and let u ∈ U (so u = f (1)
for some f ∈ H), a ∈ D1. Then
ϕa(u) = ϕa(f (1)) = f (a) = f a

−1
(1) ∈ U, hence U is a

ϕ(D1)-invariant subgroup of the simple group T . By assumption,
ϕ(D1) ≥ Inn(T ), so either U = 1 or U = T . Since D acts
transitively on the components, either H = 1 or H is a subdirect
product.
In the latter case H is determined by a subgroup D2 ≤ G and a
homomorphism ψ : D2 → Aut(T ). In order H to be contained in
F1 we need D2 ≥ D1 and ψ

∣∣
D1

= ϕ.
We have obtained:
Proposition. Int(D,G ) ∼= SubD(F1) is dually isomorphic to the
lattice of all extensions of ϕ from D1 to subgroups of D together
with an additional top element (corresponding to H = 1).
Aschbacher calls it a signalizer lattice.



An example (1)

M. Aschbacher (2008)
Let T = A5, D = A6 × A6,
D1 = diag(A5) = {(x , x) | x ∈ A5} ≤ D, ϕ : D1 → Inn(T ) an
isomorphism, and G the twisted wreath product constructed from
these ingredients. We know that Int(D,G ) ∼= SubD(T |D:D1|) is
dually isomorphic to the signalizer lattice for these data.

What are the subgroups of D containing D1?

diag(A5), A5 × A5, A5 × A6, A6 × A5, diag(A6), A6 × A6.

How can we extend ϕ to these subgroups?
Two ways to A5 × A5: using either the first or the second
projection,
one way to A5 × A6 using the first projection,
one way to A6 × A5 using the second projection,
and it cannot be extended to the last two subgroups.
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An example (2)

Hence the dual of the interval Int(D,G ) is the hexagon.
x , y ∈ A5, a, b ∈ A6

(x , y) 7→ x u(x , b) 7→ x u
(x , x) 7→ x u

TOP
u

(x , y) 7→ yu (a, y) 7→ yu�
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Exercise. Let T = A5, D = S5 × A5, D1 = diag(A5) ≤ D,
ϕ : D1 → Inn(T ) an isomorphism, and G the twisted wreath
product constructed from these ingredients. Determine the interval
Int(D,G ).
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Referee’s remark
An example for the hexagon as an interval in the subgroup lattice
of a finite group can be found in a paper published much earlier
than Aschbacher’s. Namely,

PSL(2, 11) uM11
u

11 · 5 u
11

u

A11
u

PSL(2, 11)uM11
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Here A11 is the alternating group of degree 11,
M11 is the Mathieu group of degree 11 (the smallest sporadic
simple group),
PSL(2, 11) is a projective special linear group (Galois observed
that it has an action of degree 11)
11 denotes a cyclic group of order 11, and 11 · 5 its normalizer.



The reference

Where did the referee find this example?

P. P. Pálfy, On Feit’s examples of intervals in subgroup lattices,
Journal of Algebra 116 (1988), 471–479.
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Quasiprimitive permutation groups

If N C G , N ≤ H, then Int(H,G ) ∼= Int(H/N,G/N), so w.l.o.g.
we may assume that H is core-free, i.e.,

⋂
g∈G g−1Hg = 1. We

may think of G as a permutation group with H being one of the
point-stabilizers.

The permutation group G with point stabilizer H is quasiprimitive
if every non-trivial normal subgroup N of G is transitive, that is
NH = G .



Strongly non-modular lattices

We call a lattice L strongly non-modular if for every
y ∈ L \ {0L, 1L} there exist x < z such that
x ∨ (y ∧ z) 6= (x ∨ y) ∧ z .
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A lemma

Lemma. If Int(H,G ) is strongly non-modular, then for every
normal subgroup N C G either N ≤ H or NH = G holds.
So if H is core-free, then the permutation group G with stabilizer
H is quasiprimitive.
Proof. Assume the contrary, that is, for some 1 6= N C G we have
X = NH < G . H is core-free, hence X = NH > H.

Take the subgroups H < Y < Z < G satisfying X ∨ Y = X ∨ Z ,
X ∧ Y = X ∧ Z .
Now X ∨ Y = 〈X ,Y 〉 ⊇ XY = NHY = NY .
Here NY is a subgroup, hence XY = 〈X ,Y 〉.
Furthermore, X ∨Y = X ∨Z ⊇ XZ ⊇ XY = X ∨Y , so XZ = XY .
Let z ∈ Z ≤ XY , then z = xy with x ∈ X , y ∈ Y . Now
x = zy−1 ∈ X ∩ Z = X ∩Y , so z = xy ∈ Y , contradicting Y < Z .



The minimal normal subgroup of G

Let M be a minimal normal subgroup of G . Then
Int(H,G ) ∼= IntH(H ∩M,M).

If M is an elementary abelian p-group, then IntH(H ∩M,M) is a
modular lattice.
If M is a simple group, then G is almost simple.
If M is the direct product of k ≥ 2 isomorphic copies of a
non-abelian simple group T , then any maximal H-invariant
subgroup of M is either a direct product of k copies of a subgroup
of T or it is a subdirect product in T k . (Cf. the proof of the
O’Nan–Scott Theorem.)

Certain lattice theoretic properties of IntH(H ∩M,M) imply that
every subgroup in this interval is a subdirect product.



Use Twisted Wreath Products

Aschbacher’s paper gives a similar dichotomy for representing
certain types of lattices (what he calls CD-lattices). He does not
consider lattice embeddings to extend his result to arbitrary finite
lattices. Curiously, he does not use the name twisted wreath
product.

Börner mentions twisted wreath products only in a remark,
referring to Baddeley’s paper, but says “In our paper we make no
use of this notion, because we feel that this would require an
introduction with almost the same effort as in this section.”



The key lattice (1)

Let L1 and L2 be finite lattices, L̂1 the extension of L1 that is
generated by its coatoms and contains L1 as a filter.
If the following lattice can be represented as an interval in the
subgroup lattice of a finite group, then either L1 can be
represented with an almost simple group as in (3a) or L2 can be
represented with a twisted wreath product as in (3b).



The key lattice (2)

L̂1 ⊃ L1

?

?

Ld2

?

L2

6

Ld1 ⊂ L̂d1
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Small lattices

W. DeMeo (PhD Thesis, University of Hawaii, 2012) found
representations of lattices with ≤ 7 elements, with two exceptions
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Talk ends

Bill, JB, Ralph,

Congratulations for your wonderful achievements
in Universal Algebra and Lattice Theory.

Thank you for your attention.
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