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Abstract

Starting with Ω-sets where Ω is a complete lattice, we introduce
the notion of an Ω-algebra. This is a classical algebra equipped
with an Ω-valued equality replacing the ordinary one. In these new
structures identities hold as appropriate lattice-theoretic formulas.
Our investigation is related to weak congruences of the basic
algebra to which a generalized equality is associated. Namely every
Ω-algebra uniquely determines a closure system in the lattice of
weak congruences of the basic algebra. By this correspondence we
formulate a representation theorem for Ω-algebras.
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Introduction

Our research originates in the theory of Ω-sets.
These structures appeared in 1979. by Fourman and Scott.
Introducing Ω-sets, they intended to use them for modeling
intuitionistic logic, analogously to the application of
Boolean-valued models in first-order logic.
An Ω-set is a nonempty set A equipped with an Ω-valued equality
E , with truth-values in a complete Heyting algebra Ω. E is a
symmetric and transitive function from A2 to Ω. In this
framework, Ω-sets consist of so called ’partial elements’, since
E (a, a) is understood as a ’probability’ of a ∈ A, and E is not
reflexive (not constantly equal 1 for pairs (x , x)).

Ω-sets have been further applied to non-classical predicate logics,
and also partially in theoretical foundations of fuzzy set theory.
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Another source of our investigation is the concept of algebras with
fuzzy equality, introduced by Bělohlávek and Vychodil in 2006.

Following the philosophy of fuzzy mathematics, they use a
complete residuated lattice L as a truth-values structure (called
also a membership-values structure) and equip a nonempty set A
with a particular L-valued equality which should replace the
characteristic function of the classical equality. By adding
operations to this structure they obtain so-called L-algebras. The
corresponding equational logic is the one by Pavelka (1979). Basic
parts of universal algebra are presented in this framework, including
a Birkoff-like variety theorem.
A generalized equality was further used in particular by Demirci
(2003), Bělohlávek and Vychodil (2006) and others.
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Introducing Ω-algebras, we use Ω-sets and in our approach Ω is a
complete lattice (not necessarily a Heyting algebra).

A reason for
this membership-values structure is that it allows the use of
cut-sets as a tool appearing in the fuzzy set theory. Still the main
reason for using a complete lattice as a co-domain comes from the
representation theorems that we prove here. In this construction
the lattice of truth-values for an Ω-algebra is closely related to the
weak-congruence lattice of the basic, underlying algebra and it
could be any algebraic lattice.
Identities for lattice-valued structures with a fuzzy equality were
introduced by Bělohlávek (2006) with graded satisfiability.
In our approach, an identity holds if the corresponding
lattice-theoretic formula is fulfilled. An identity may hold on a
lattice-valued algebra, while the underlying classical algebra need
not satisfy the same identity.
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introduced by Bělohlávek (2006) with graded satisfiability.

In our approach, an identity holds if the corresponding
lattice-theoretic formula is fulfilled. An identity may hold on a
lattice-valued algebra, while the underlying classical algebra need
not satisfy the same identity.
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Preliminaries

An algebra is denoted by A = (A,F ), where A is a nonempty set
and F is a set of (fundamental) operations on A.
We deal with terms, term-operations, and identities in the given
language as formulas t1 ≈ t2, where t1, t2 are terms in the same
language.
In addition to congruences, we use weak congruences on A as
symmetric and transitive subalgebras of A2.

A weak congruence on A is a congruence on the subalgebra
determined by its domain.

The collection Conw(A) of all weak congruences on an algebra A
is an algebraic lattice under inclusion.
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Ω-valued sets and relations

By (Ω,∧,∨,6) we denote a complete lattice with the top and the
bottom elements, 1 and 0, respectively.
If A is a nonempty set, then an Ω-valued function µ on A is a
map µ : A→ Ω. For x ∈ A, µ(x) is a degree of membership of x
to µ.
For p ∈ L, a cut set or a p-cut of an Ω-valued function µ : A→ Ω
is a subset µp of A which is the inverse image of the principal filter
↑p in Ω: µp = µ−1(↑p) = {x ∈ X | µ(x) > p}.

An Ω-valued (binary) relation R on A is an Ω-valued function on
A2, i.e., it is a mapping R : A2 → Ω. As above, for p ∈ Ω, a cut
Rp of R is the binary relation on A, which is the inverse image of
↑p: Rp = R−1(↑p).
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R is symmetric if R(x , y) = R(y , x) for all x , y ∈ A,

and transitive if R(x , y) > R(x , z) ∧ R(z , y) for all x , y , z ∈ A.

Lemma

An Ω-valued binary relation R on A is symmetric (transitive) if and
only if all cuts of R are classical symmetric (transitive) relations on
A.

A symmetric and transitive Ω-valued relation on A fulfills the
strictness property:

R(x , y) 6 R(x , x) ∧ R(y , y),

Strictness can be understood as a weak reflexivity of R. Therefore,
a symmetric and transitive Ω-valued relation on A is a weak
Ω-valued equivalence on A.
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If µ : A→ Ω is an Ω-valued function on A, then the map
R : A2 → Ω on A is an Ω-valued relation on µ if for all x , y ∈ A

R(x , y) 6 µ(x) ∧ µ(y).

An ordinary symmetric and transitive relation is reflexive on its
domain. Analogously, an Ω-valued relation R on µ : A→ Ω is said
to be reflexive on µ if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
reflexive on µ : A→ Ω is an Ω-valued equivalence on µ.

If R : A2 → Ω is a weak Ω-valued equivalence on A, then it is an
Ω-valued equivalence on µ : A→ Ω, such that µ(x) = R(x , x).
The Ω-valued function µ is said to be determined by R.
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A weak Ω-valued equivalence R on A is a weak Ω-valued
equality, if it satisfies the separation property:

If R(x , x) 6= 0, then R(x , y) = R(x , x) implies x = y .

Analogously, an Ω-valued equivalence on µ : A→ Ω satisfying the
separation property is an Ω-valued equality on µ.
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If A = (A,F ) is an algebra and µ : A→ Ω an Ω-valued function on
A, then µ is compatible with the operations in F , if for every
n-ary operation f ∈ F , for all a1, . . . , an ∈ A, and for every
constant (nullary operation) c ∈ F

n∧
i=1

µ(ai ) 6 µ(f (a1, . . . , an)), and µ(c) = 1.

Analogously, an Ω-valued relation R : A2 → Ω on A is compatible
with the operations in F if for every n-ary operation f ∈ F , for all
a1, . . . , an, b1, . . . , bn ∈ A, and for every constant c ∈ F

n∧
i=1

R(ai , bi ) 6 R(f (a1, . . . , an), f (b1, . . . , bn)), and R(c , c) = 1.
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Lemma

Let A = (A,F ) be an algebra.

An Ω-valued function µ : A→ Ω on A is compatible with all the
operations in F , if and only if for every p ∈ Ω, µp is a subalgebra
of A.
Similarly, an Ω-valued relation R : A2 → Ω on A is compatible with
all the operations in F , if and only if for every p ∈ Ω, Rp is
compatible with all the operations in F .
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Ω-set and Ω-algebra

An Ω-set is a pair (A,E ), where A is a nonempty set, and E is a
symmetric and transitive Ω-valued relation on A, fulfilling the
separation property:

If E (x , x) 6= 0, then E (x , y) = E (x , x) implies x = y .

As defined above, the Ω-valued function µ : A→ Ω on A, given by
µ(x) = E (x , x), is determined by E , which is a weak Ω-valued
equivalence on A. But E is also an Ω-valued equality on µ.
Therefore, we say that in an Ω-set (A,E ), E is an Ω-valued
equality.

Lemma

Every cut Ep = E−1(↑p), p ∈ Ω, of the Ω-valued equality E in an
Ω-set (A,E ) is an equivalence relation on the corresponding cut µp
of µ.
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A pair A = (A,E ) is an Ω-algebra if A = (A,F ) is an algebra,
(A,E ) is an Ω-set and E is compatible with the operations in F . A
is the underlying, basic algebra of A.

Proposition

Let (A,E ) be an Ω-algebra. Then:
(i ) The Ω-valued function µ determined by E is compatible with
the fundamental operations on A.
(ii ) For every p ∈ Ω, the cut µp of µ is a subalgebra of A, and
(iii ) Every cut of E is a weak congruence on A, namely for p ∈ E,
Ep is a congruence on µp.
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Next we define how identities hold on Ω-algebras.

Recall that in the equational logic, the relational symbol ≈ in an
identity u ≈ v is modeled by the classical equality ” = ”. In the
framework of Ω-algebras, this relational symbol corresponds to the
Ω-equality E , as follows.
Let (A,E ) be an Ω-algebra and u(x1, . . . , xn) ≈ v(x1, . . . , xn),
briefly u ≈ v be an identity in the type of A. We assume, as usual,
that variables appearing in terms u and v are from x1, . . . , xn.
Then, (A,E ) satisfies identity u ≈ v (i.e., this identity holds on
(A,E )) if

n∧
i=1

µ(ai ) 6 E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ A and the term-operations on A corresponding
to terms u and v respectively.

B. Šešelja Ω-algebras



Next we define how identities hold on Ω-algebras.
Recall that in the equational logic, the relational symbol ≈ in an
identity u ≈ v is modeled by the classical equality ” = ”.

In the
framework of Ω-algebras, this relational symbol corresponds to the
Ω-equality E , as follows.
Let (A,E ) be an Ω-algebra and u(x1, . . . , xn) ≈ v(x1, . . . , xn),
briefly u ≈ v be an identity in the type of A. We assume, as usual,
that variables appearing in terms u and v are from x1, . . . , xn.
Then, (A,E ) satisfies identity u ≈ v (i.e., this identity holds on
(A,E )) if

n∧
i=1

µ(ai ) 6 E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ A and the term-operations on A corresponding
to terms u and v respectively.
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If Ω-algebra (A,E ) satisfies an identity, this identity need not hold
on A, but the converse holds:

An identity u ≈ v fulfilled on an algebra A holds on an Ω-algebra
(A,E ) as well.

Theorem

Let (A,E ) be an Ω-algebra, and F a set of identities in the
language of A. Then, (A,E ) satisfies all identities in F if and only
if for every p ∈ L the quotient algebra µp/Ep satisfies the same
identities.
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Corollary

If a diagonal relation ∆A = {(a, a) | a ∈ A} is a cut of E , then
each identity fulfilled by an Ω-algebra A = (A,E ) also holds on
the underlying algebra A.

By Corollary , we are interested in Ω-algebras which do not contain
a copy of the underlying algebra among quotient substructures. An
Ω-algebra A = (A,E ) is said to be proper if ∆A is not a cut of E .

Theorem

A = (A,E ) is a proper Ω-algebra if and only if

there are a, b ∈ A, a 6= b, such that E (a, b) >
∧
{E (x , x) | x ∈ A}.
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Proposition

The collection of cuts of E in an Ω-algebra A = (A,E ) is a closure
system on A2, a subposet of the weak congruence lattice Conw(A)
of A.

Theorem (Representation)

Let A be an algebra and R a closure system in Conw(A) such that

if a 6= b, then (a, b) 6∈
⋂
{R ∈ R | (a, a) ∈ R} for all a, b ∈ A.

Then there is a complete lattice Ω and an Ω-algebra (A,E ) with
the underlying algebra A, such that R consists of cuts of E .
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Sketch of the proof

We take Ω to be the starting collection R of weak congruences
ordered by the dual of inclusion, ⊇. Being a closure system,
(R,⊇) is a complete lattice. Next, we define E : A2 → Ω:

E (a, b) :=
⋂

(R ∈ R | (a, b) ∈ R) for all a, b ∈ A.

Now we have that ER = R (the cut determined by R considered as
an element of Ω, coincides with R as a weak congruence).

The structure (A,E ) is then the required Ω-algebra, obtained by
the canonical construction.
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For a symmetric and transitive relation R ⊆ A2, we denote by
domR the set {x ∈ A | (x , x) ∈ R}.

Corollary

Let A be an algebra and R a closure system in Conw(A) fulfilling
condition:

if a 6= b, then (a, b) 6∈
⋂
{R ∈ R | (a, a) ∈ R} for all a, b ∈ A.

Let also F be a set of identities in the language of A and suppose
that for every R ∈ R, the algebra domR/R fulfills these identities.
Then there is a complete lattice Ω and an Ω-algebra (A,E ), such
that R consists of cuts of E and (A,E ) satisfies F .
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Suppose that we have different complete lattices, Ω1 and Ω2 and
an algebra A. Let (A,E1) and (A,E2) be an Ω1-valued algebra
and an Ω2-valued algebra respectively. We say that the structures
(A,E1) and (A,E2) are cut-equivalent if their collections of
quotient algebras over cuts of E1 and E2 coincide, i.e., if for every
p ∈ Ω1 there is q ∈ Ω2 such that µ1p/E1p = µ2q/E2q and vice
versa.

Theorem

Let A = (A,E ) be an Ω-algebra where Ω is an arbitrary complete
lattice. Then there is a lattice and a lattice-valued algebra
cut-equivalent with A, obtained by the canonical construction over
A.
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Examples

1. (({e, a, b, c , d}, · , ′ ),E )
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E e a b c d

e 1 u t t s
a u r 0 0 0
b t 0 q t 0
c t 0 t q 0
d s 0 0 0 p.

µ =

(
e a b c d
1 r q q p

)
.

The cuts of E are either diagonal relations on subalgebras (Eq on
{e, b, c} and Er on { e, a}), or they are full relations on one-, two-
or three-element subalgebras (e.g., Et is a full relation on
{e, b, c}). Trivially, E0 is a full relation on the whole algebra. All
the corresponding quotient algebras are groups, hence (A,E ) is an
Ω-group. Observe that the basic five-element algebra is not a
group.
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S3 – symmetric group, (S3,E ) – the corresponding Ω-group.

◦ e f g h j k

e e f g h j k
f f e h g k j
g g j e k f h
h h k f j e g
j j g k e h f
k k h j f g e
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E e f g h j k

e 1 x w q q v
f x t u 0 0 u
g w u s 0 0 u
h q 0 0 p q 0
j q 0 0 q p 0
k v u u 0 0 r .

µ =

(
e f g h j k
1 t s p p r

)
.

All the structures µz/Ez , z ∈ Ω are groups of order 3, 2 or 1,
hence Abelian.
Therefore, this structure is an Abelian Ω-group, identity
x · y ≈ y · x
holds as the formula
µ(x) ∧ µ(y) 6 E (x · y , y · x).
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For the cuts, we have e.g., µp = {e, h, j}, µu = {e, f , g , h, j , k}.

Ep e f g h j k

e 1 0 0 0 0 0
f 0 0 0 0 0 0
g 0 0 0 0 0 0
h 0 0 0 1 0 0
j 0 0 0 0 1 0
k 0 0 0 0 0 0

Eu e f g h j k

e 1 0 0 1 1 0
f 0 1 1 0 0 1
g 0 1 1 0 0 1
h 1 0 0 1 1 0
j 1 0 0 1 1 0
k 0 1 1 0 0 1 .

Hence, Ep is a weak congruence on S3, a diagonal of µp = {e, h, j}
and µp/Ep is a group of order 3. Next, µu is the underlying group
S3. Therefore, µu/Eu = {{e, h, j}, {f , g , h}} i.e., it is a
two-element quotient group, similarly for other cuts.
This Ω-group is obtained by the technique described above. The
closure system i.e., the lattice Ω is Conw(S3) \∆S3 , consisting of
all weak congruences on S3 except the diagonal ∆S3 . And the
order in this lattice is dual to the set inclusion.
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B. Šešelja Ω-algebras



M. Demirci, Foundations of fuzzy functions and vague algebra
based on many-valued equivalence relations part I: fuzzy
functions and their applications, part II: vague algebraic
notions, part III: constructions of vague algebraic notions and
vague arithmetic operations, Int. J. General Systems 32 (3)
(2003) 123-155, 157-175, 177-201.
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