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Abstract

Starting with €2-sets where €2 is a complete lattice, we introduce
the notion of an Q-algebra. This is a classical algebra equipped
with an Q-valued equality replacing the ordinary one. In these new
structures identities hold as appropriate lattice-theoretic formulas.
Our investigation is related to weak congruences of the basic
algebra to which a generalized equality is associated. Namely every
Q-algebra uniquely determines a closure system in the lattice of
weak congruences of the basic algebra. By this correspondence we
formulate a representation theorem for Q-algebras.
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E, with truth-values in a complete Heyting algebra Q. E is a
symmetric and transitive function from A% to Q. In this
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E(a, a) is understood as a 'probability’ of a € A, and E is not
reflexive (not constantly equal 1 for pairs (x, x)).
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Introduction

Our research originates in the theory of Q-sets.

These structures appeared in 1979. by Fourman and Scott.
Introducing Q-sets, they intended to use them for modeling
intuitionistic logic, analogously to the application of
Boolean-valued models in first-order logic.

An Q-set is a nonempty set A equipped with an Q-valued equality
E, with truth-values in a complete Heyting algebra Q. E is a
symmetric and transitive function from A% to Q. In this
framework, Q-sets consist of so called 'partial elements’, since
E(a, a) is understood as a 'probability’ of a € A, and E is not
reflexive (not constantly equal 1 for pairs (x, x)).

Q-sets have been further applied to non-classical predicate logics,
and also partially in theoretical foundations of fuzzy set theory.
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Another source of our investigation is the concept of algebras with
fuzzy equality, introduced by Bélohlavek and Vychodil in 2006.
Following the philosophy of fuzzy mathematics, they use a
complete residuated lattice L as a truth-values structure (called
also a membership-values structure) and equip a nonempty set A
with a particular L-valued equality which should replace the
characteristic function of the classical equality. By adding
operations to this structure they obtain so-called L-algebras. The
corresponding equational logic is the one by Pavelka (1979). Basic
parts of universal algebra are presented in this framework, including
a Birkoff-like variety theorem.

A generalized equality was further used in particular by Demirci
(2003), Bélohlavek and Vychodil (2006) and others.
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Introducing Q-algebras, we use Q-sets and in our approach Q is a
complete lattice (not necessarily a Heyting algebra). A reason for
this membership-values structure is that it allows the use of
cut-sets as a tool appearing in the fuzzy set theory. Still the main
reason for using a complete lattice as a co-domain comes from the
representation theorems that we prove here. In this construction
the lattice of truth-values for an Q-algebra is closely related to the
weak-congruence lattice of the basic, underlying algebra and it
could be any algebraic lattice.

Identities for lattice-valued structures with a fuzzy equality were
introduced by B&lohlavek (2006) with graded satisfiability.

In our approach, an identity holds if the corresponding
lattice-theoretic formula is fulfilled. An identity may hold on a
lattice-valued algebra, while the underlying classical algebra need
not satisfy the same identity.
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Preliminaries

An algebra is denoted by A = (A, F), where A is a nonempty set
and F is a set of (fundamental) operations on A.
We deal with terms, term-operations, and identities in the given
language as formulas t; = tp, where t1, t» are terms in the same
language.
In addition to congruences, we use weak congruences on A as
symmetric and transitive subalgebras of A2.
A
A weak congruence on A is a congruence on the subalgebra
determined by its domain. )
A
The collection Cony,(.A) of all weak congruences on an algebra A
is an algebraic lattice under inclusion.

\
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By (2, A, Vv, <) we denote a complete lattice with the top and the
bottom elements, 1 and 0, respectively.

If Ais a nonempty set, then an Q-valued function p on A is a
map 1 A — Q. For x € A, u(x) is a degree of membership of x
to pu.

For p € L, a cut set or a p-cut of an Q-valued function p: A — Q
is a subset i, of A which is the inverse image of the principal filter

1P in Q: pp = (1) = {x € X | p(x) > p}.

An Q-valued (binary) relation R on A is an Q-valued function on
A2 je. itisa mapping R : A2 — Q. As above, for p €, acut
Rp of R is the binary relation on A, which is the inverse image of

Tp: Rp = R™(1p).
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R is symmetric if R(x,y) = R(y,x) for all x,y € A,
and transitive if R(x,y) > R(x,z) A R(z,y) for all x,y,z € A.

An Q-valued binary relation R on A is symmetric (transitive) if and
only if all cuts of R are classical symmetric (transitive) relations on
A.

A symmetric and transitive 2-valued relation on A fulfills the
strictness property:

R(x,y) < R(x,x) A R(y,y),

Strictness can be understood as a weak reflexivity of R. Therefore,
a symmetric and transitive Q-valued relation on A is a weak
Q-valued equivalence on A.
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If u: A— Qis an Q-valued function on A, then the map
R : A%2 — Qon Ais an Q-valued relation on 4 if for all x,y € A

R(x,y) < p(x) A p(y).

An ordinary symmetric and transitive relation is reflexive on its
domain. Analogously, an Q-valued relation R on i : A — Q is said
to be reflexive on p if

R(x,x) = p(x) for every x € A.

A symmetric and transitive 2-valued relation R on A, which is
reflexive on p: A — Q is an Q-valued equivalence on .

IfR : A2 — Q is a weak Q-valued equivalence on A, then it is an
Q-valued equivalence on i : A — Q, such that u(x) = R(x,x).
The Q-valued function y is said to be determined by R.
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A weak Q-valued equivalence R on A is a weak Q-valued
equality, if it satisfies the separation property:

If R(x,x)#0, then R(x,y)= R(x,x) implies x =y.

Analogously, an Q-valued equivalence on p : A — Q satisfying the
separation property is an Q-valued equality on p.
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If A= (A, F) is an algebra and 1 : A — Q an Q-valued function on
A, then p is compatible with the operations in F, if for every
n-ary operation f € F, for all a1,...,a, € A, and for every
constant (nullary operation) ¢ € F

n

/\ w(ai) < p(f(ar,--.,an)), and p(c) =1
i=1

Analogously, an Q-valued relation R : A2 — Q on A is compatible
with the operations in F if for every n-ary operation f € F, for all
ai,...,an, b1,..., by € A, and for every constant c € F

/\ R(ai, bi) < R(f(a1,...,an), f(b1,...,by)), and R(c,c)=1.
i=1
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Let A= (A, F) be an algebra.

An Q-valued function v : A — € on A is compatible with all the
operations in F, if and only if for every p € S0, up is a subalgebra
of A.
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Lemma

Let A= (A, F) be an algebra.

An Q-valued function v : A — € on A is compatible with all the
operations in F, if and only if for every p € 2, i, is a subalgebra
of A.

Similarly, an Q-valued relation R : A> — Q on A is compatible with
all the operations in F, if and only if for every p € Q, R, is
compatible with all the operations in F.
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(2-set and Q2-algebra

An Q-set is a pair (A, E), where A is a nonempty set, and E is a
symmetric and transitive (2-valued relation on A, fulfilling the
separation property:

If E(x,x)#0, then E(x,y)= E(x,x) implies x =y.

As defined above, the Q-valued function v : A — Q on A, given by
wu(x) = E(x, x), is determined by E, which is a weak Q-valued
equivalence on A. But E is also an Q-valued equality on .
Therefore, we say that in an Q-set (A, E), E is an Q-valued
equality.

Every cut E, = E71(1p), p € Q, of the Q-valued equality E in an
Q-set (A, E) is an equivalence relation on the corresponding cut jip
of .
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A pair A = (A, E) is an Q-algebra if A = (A, F) is an algebra,
(A, E) is an Q-set and E is compatible with the operations in F. A
is the underlying, basic algebra of A.

Proposition

Let (A, E) be an Q-algebra. Then:

(i) The Q-valued function 1 determined by E is compatible with
the fundamental operations on A.

(ii ) For every p € Q, the cut u, of ju is a subalgebra of A, and
(iii ) Every cut of E is a weak congruence on A, namely for p € E,
E, is a congruence on [ip.

V.
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Next we define how identities hold on Q-algebras.

Recall that in the equational logic, the relational symbol = in an
identity u = v is modeled by the classical equality " = ". In the
framework of 2-algebras, this relational symbol corresponds to the
Q-equality E, as follows.

Let (A, E) be an Q-algebra and u(xi,...,xn) = v(x1,...,Xn),
briefly u =~ v be an identity in the type of A. We assume, as usual,

that variables appearing in terms v and v are from xg, ..., X.
Then, (A, E) satisfies identity u ~ v (i.e., this identity holds on
(A, E)) if

w(ai) < E(u(ai,...,an),v(a1,...,an)),
1

n
1=

for all a1,...,a, € A and the term-operations on A corresponding
to terms u and v respectively.
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If Q-algebra (A, E) satisfies an identity, this identity need not hold
on A, but the converse holds:
(A
An identity u ~ v fulfilled on an algebra A holds on an Q-algebra
(A, E) as well.

v
Theorem

Let (A, E) be an Q-algebra, and F a set of identities in the
language of A. Then, (A, E) satisfies all identities in F if and only
if for every p € L the quotient algebra 1,/ E,, satisfies the same
identities.

A\
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If a diagonal relation Ap = {(a,a) | a € A} is a cut of E, then
each identity fulfilled by an Q-algebra A = (A, E) also holds on
the underlying algebra A.

By Corollary , we are interested in -algebras which do not contain
a copy of the underlying algebra among quotient substructures. An
Q-algebra A = (A, E) is said to be proper if A, is not a cut of E.

A = (A, E) is a proper Q-algebra if and only if

there are a,b € A, a # b, such that E(a,b) > /\{Exx | x € A}
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Proposition

The collection of cuts of E in an Q-algebra A = (A, E) is a closure
system on A2, a subposet of the weak congruence lattice Cony,(.A)

of A.
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Proposition

The collection of cuts of E in an Q-algebra A = (A, E) is a closure
system on A2, a subposet of the weak congruence lattice Cony,(.A)

of A.

Theorem (Representation)

Let A be an algebra and R a closure system in Cony,(.A) such that
ifa# b, then (a,b) & {RE€R|(a,a) € R} forallabe A

Then there is a complete lattice Q2 and an Q-algebra (A, E) with
the underlying algebra A, such that R consists of cuts of E.
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Sketch of the proof

We take €2 to be the starting collection R of weak congruences
ordered by the dual of inclusion, O. Being a closure system,
(R,2D) is a complete lattice. Next, we define E : A2 - Q:

E(a,b):=((R€R|(a,b)€R) foralla,be A

Now we have that Eg = R (the cut determined by R considered as
an element of 2, coincides with R as a weak congruence).

The structure (A, E) is then the required Q-algebra, obtained by
the canonical construction.
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domR the set {x € A| (x,x) € R}.
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For a symmetric and transitive relation R C A%, we denote by
domR the set {x € A| (x,x) € R}.

Corollary

Let A be an algebra and R a closure system in Cony,(A) fulfilling
condition:

if a # b, then (a,b)gﬂ{RERHa,a)eR} for all a,b € A.

Let also F be a set of identities in the language of A and suppose
that for every R € R, the algebra domR/R fulfills these identities.
Then there is a complete lattice Q and an Q-algebra (A, E), such
that R consists of cuts of E and (A, E) satisfies F.
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Suppose that we have different complete lattices, 7 and €, and
an algebra A. Let (A, E1) and (A, E2) be an Q;-valued algebra
and an »-valued algebra respectively. We say that the structures
(A, E1) and (A, E2) are cut-equivalent if their collections of
quotient algebras over cuts of E1 and E2 coincide, i.e., if for every
p € Qy there is g € Q5 such that pl,/E1l, = u24/E24 and vice
versa.
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Suppose that we have different complete lattices, 7 and €, and
an algebra A. Let (A, E1) and (A, E2) be an Q;-valued algebra
and an »-valued algebra respectively. We say that the structures
(A, E1) and (A, E2) are cut-equivalent if their collections of
quotient algebras over cuts of E1 and E2 coincide, i.e., if for every
p € Qy there is g € Q5 such that pl,/E1l, = u24/E24 and vice
versa.

Let A= (A, E) be an Q-algebra where 0 is an arbitrary complete
lattice. Then there is a lattice and a lattice-valued algebra
cut-equivalent with A, obtained by the canonical construction over

A.
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Examples

1.

(({e,a,b,c,d}, -,"), E)
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Ele a b ¢ d
el|l u t t s
alu r 0 0 O (e a b c d
thth’u_(quqp>'
c|t 0 t g O
dis 0 0 0 p

The cuts of E are either diagonal relations on subalgebras (Eq on
{e,b,c} and E, on { e, a}), or they are full relations on one-, two-
or three-element subalgebras (e.g., E; is a full relation on

{e, b,c}). Trivially, Eg is a full relation on the whole algebra. All
the corresponding quotient algebras are groups, hence (A, E) is an
Q-group. Observe that the basic five-element algebra is not a

group.
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S3 — symmetric group, (S3, E) — the corresponding Q-group.
ole f g h j k
ele f g h j k
fl1f e h g k |
glg j e k f h
hlh kK f j e g
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All the structures p,/E;, z € 2 are groups of order 3, 2 or 1,
hence Abelian.
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Ele f g h j k

e|ll x w qg qg v

fix t v 0 0 u e f g hj k
glw u s 0 0 wu n={q ; . R
hlg 0 0 p q O PP

jlg 0 0 g p O

kv u uvu 0 0 r.

All the structures p,/E;, z € 2 are groups of order 3, 2 or 1,
hence Abelian.

Therefore, this structure is an Abelian Q-group, identity
X-yRy-Xx

holds as the formula

w(x) A pu(y) < E(x-y,y - x).
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For the cuts, we have e.g., up, = {e, h,j},
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For the cuts, we have e.g., up = {e, h,j}, pu=1{e,f, g hj, k}.

Eole f g h j k E,le f g h j k
e|1 0 0 0 0 O el 0 0 1 1 O
f10 0 0O O O O fl10 1 1 0 0 1
g0 0 0 0 0 O g0 1 1 0 0 1
h|0 0O O 1 0 O h|1 0 0 1 1 0
j /0 0 0 0 1 O j /1 0 0 1 1 0
k|0 0O 0 0 0 O k|0 1 1 0 0 1.

Hence, E, is a weak congruence on S3, a diagonal of y, = {e, h, j}
and pp/Ep is a group of order 3.
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This Q-group is obtained by the technique described above.

B. Seselja Q-algebras



For the cuts, we have e.g., up = {e, h,j}, pu=1{e,f, g hj, k}.

Eole f g h j k E,le f g h j k
e|1 0 0 0 0 O el 0 0 1 1 O
f10 0 0O O O O fl10 1 1 0 0 1
g0 0 0 0 0 O g0 1 1 0 0 1
h|0 0O O 1 0 O h|1 0 0 1 1 0
j /0 0 0 0 1 O j /1 0 0 1 1 0
k|0 0O 0 0 0 O k|0 1 1 0 0 1.

Hence, E, is a weak congruence on S3, a diagonal of y, = {e, h, j}
and pp/Ep is a group of order 3. Next, i, is the underlying group
Ss. Therefore, p,/E, = {{e, h,j},{f,g,h}} ie., itisa
two-element quotient group, similarly for other cuts.

This Q-group is obtained by the technique described above. The
closure system i.e., the lattice Q is Cony(S53) \ As,, consisting of
all weak congruences on S3 except the diagonal Ag,. And the
order in this lattice is dual to the set inclusion.
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