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Definitions I

Definition
Let F be the family of finite subsets of N. For any X ⊆ N, let
F(X ) be the family of finite subsets of X . Let I denote the family
of finite sets of consecutive natural numbers

[m,n] ∶= {m,m + 1, . . . ,n}

Definition
Define the function σ ∶ F → Q+ by

σS = ∑
n∈S

1
n
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Definitions II

Definition
For r ∈ Q+, let Fr ⊆ F denote the family of finite S ⊆ N for which
σS = r .

Definition

We define the functions ν ∶ F → N and δ ∶ F → N by σS =
νS

δS
,

where νS and δS are coprime.
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Example

We let I = [2,4] = {2,3,4} and S = {3,4,5,7,12,20,42}. Then,

σI =
1
2
+
1
3
+
1
4

=
13
12

=
1
3
+
1
4
+
1
5
+
1
7
+

1
12

+
1
20

+
1
42

= σS

We see {I ,S} ⊆ F13/12 and δI = δS = 12, νI = νS = 13.
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Theorems

Theorem 1 (Surjectivity)

For each r ∈ Q+, there is an infinite pairwise disjoint family Hr ⊆ Fr .

Theorem 2 (Injectivity)

Let X be a pairwise coprime subset of N. Then σ ∣̀F(X ) and
δ ∣̀F(X ) are injections. Also, σC ∈ N for C ∈ F(X ) if and only if
C = {1}.
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Background I

Theisinger-Kürschák

L. Theisinger [10] proved in 1915 that σ[1,n] ∈ N only if n = 1. In
1918 J. Kürschák [6] proved that σ[m,n] ∈ N only if m = n = 1.

Erdös

If d ≥ 1, and if either m > 1 or k > 1, then
k−1
∑
j=0

1
m + dj

/∈ N. [3]
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Background III

Belbachir and Khelladi
For {a0, a1, . . . , ak−1} ⊆ N, if d ≥ 1, and if either m > 1 or k > 1,

then
k−1
∑
j=0

1
(m + dj)aj

/∈ N. [1]

Obláth
n

∑
i=m

ai
i

/∈ N if i is coprime to ai for each i ∈ [m,n], where

[m,n] /= {1}. [3]
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Background IV

Erdös -Niven
The function σ ∣̀I is injective.([4], 1946)
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Surjectivity Theorem

Theorem 1
For each r ∈ Q+, there is an infinite pairwise disjoint family Hr ⊆ Fr .

Vital Identity

For all z ∉ {−1,0}
1
z
=

1
z + 1

+
1

z(z + 1)

Definition
Define ◇ ∶ N→ N and ⋆ ∶ N→ N by ◇n = n + 1 and ⋆n = n(n + 1).

Then the Vital Identity says

1
n
=

1
◇n

+
1
⋆n

Ð→ σ{n} = σ{◇n,⋆n}
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Surjectivity Theorem

Definition
Let W denote the set of all finite words w in the letters ◇ and ⋆.
Each word w ∶ N→ N can be thought of an injection under
composition of its letters. We let Wk ⊆ W be the words of length k
in W. For each n ∈ N we let W n denote the (perhaps multiset)
{w n∣w ∈ W}. We define Wk n analogously.

Example

We can let w = ◇ ⋆ ◇2 ∈ W4. Then

w 1 = ◇ ⋆ ◇21 = ◇ ⋆ ◇2 = ◇ ⋆ 3 = ◇12 = 13 ∈ W 41 ⊆ W 1

Sylvia Silberger
Sums of finitely many distinct reciprocals (work with Donald Silberger)
10 / 21



Outline of Proof of Surjectivity Theorem (Theorem 1)

Lemma 1
Let w b = n = w′ b with w ≠ w′. Then ∣w ∣ ≠ ∣w′ ∣.

Corollary 2
Each Wk n is a simple set.

Lemma 3

If k is a nonnegative integer, then σ (Wk b) =
1
b .

Proof of Lemma 3

(basis) σ (W0 b) = σ{b} =
1
b .

(ind step) Suppose σ (Wk b) =
1
b . Note that

Wk+1 = {◇w ∣w ∈ Wk} ⊍ {⋆w ∣w ∈ Wk} and for each w ∈ Wk ,
σ{◇w b,⋆w b} = σ(w b).
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Outline of Proof of Surjectivity, Continued

Corollary 4
Let b ≥ 2. Then there exists an infinite pairwise disjoint family
Gb ⊆ F such that σS = 1

b for each S ∈ Gb.

Idea of Proof
We know ◇ and ⋆ are increasing. Choose sequence k1, k2, . . . of
integers far enough apart to ensure maxWki b < minWki+1 b.
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Outline of Proof os Surjectivity, Continued

Theorem 1
For each r ∈ Q+, there is an infinite pairwise disjoint family Hr ⊆ Fr .

Proof.
Let r = a

b , b ≥ 2. Let Gb = {S1,S2,S3, . . .} and for each n ∈ N define

Tn ∶=
a−1
⋃
i=0

San+i
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Injectivity I

Definition
For integers m and n, we write m∣n for “m divides n” and mv ∣∣n for
“mv divides n exactly” ≡ mv ∣n, but mv+1 ∤ n.

Chebyshev’s Theorem (Bertrand’s Postulate)

If n ≥ 2 then there is a prime p such that n < p < 2n.

Sylvester’s Theorem

If n < 2m then there is a prime p > n −m for which p∣ lcm[m,n].

Corollary

If m < n then there is a prime p > n −m such that pv ∣∣ lcm[m,n] for
some v ∈ N, and pv ∣∣x for exactly one x ∈ [m,n].
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Sylvester Powers

Definition
For X ∈ F , when v ∈ N and p is prime, we call pv a Sylvester power
of X if pv ∣∣ lcm(X ) and pv ∣∣x for exactly one x ∈ X . We will let
S(X ) denote the set of all Sylvester powers of X .

Example

[1000,1004] = {1000,1001,1002,1003,1004}

= {23 ⋅ 53, 7 ⋅ 11 ⋅ 13, 2 ⋅ 3 ⋅ 167, 17 ⋅ 59, 22 ⋅ 251}

S[1000,1004] = {23, 3, 53, 7, 11, 13, 17, 59, 167, 251}
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Injectivity II

Lemma 1
For a prime p, if pv ∣∣ lcm(X ) while pv > maxX −minX then
pv ∈ S(X ) and if 2v ∣∣ lcm[m,n] then 2v ∈ S[m,n].

Lemma 2
For X ∈ F and p prime and v ∈ N, let pv ∈ S(X ). Then pv ∣∣δX .

Corollary: Theisinger-Kürschák

σ[m,n] ∈ N only if m = n = 1.
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Injectivity III

Theorem
For {X ,Y } ⊆ F and v ∈ N, let pv ∈ S(X ) ∖ S(Y ) with
pv > maxY −minY . Then δX ≠ δY and so σX ≠ σY .

Proof of Theorem
By Lemma 3, pv ∣∣δX .
There exists u ≥ 0 such that pu ∣∣ lcm(Y ). Since pv ∉ S(Y ) and
pv > maxY −minY , u ≠ v .
If u > v , then pu ∈ S(Y ) and so pu ∣∣δY . So δY ≠ δX .
If u < v , then the biggest power of p that divides δY is less than pv

and so δY ≠ δX .
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Proof of Theorem 2

Theorem 2
Let X be a pairwise coprime subset of N. Then σ ∣̀F(X ) and
δ ∣̀F(X ) are injections. Also, σC ∈ N for C ∈ F(X ) if and only if
C = {1}.

Proof of Theorem 2
Let X ⊆ N be pairwise coprime and {A,B} ∈ F(X ) with A ≠ B .
Then WLOG there is a ∈ A ∖B and a prime p that divides a but
does not divide any element of (A ∖ {a}) ∪B . Then some power of
p is in S(A) and hence divides δA, but p does not divide δB .
Thus, δA ≠ δB and so σA ≠ σB .
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Questions

Question 1
Does there exist an X ⊆ N such that σ ∣̀F(X ) is bijective onto Q+?

Question 2
If 1 < m < n < m′ < n′ and if n −m ≤ n′ −m′, can we conclude
S[m,n] ≠ S[m′,n′]?
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