Sums of finitely many distinct reciprocals (work with Donald Silberger)

Conference on Algebra and Lattices in Hawai'i Honoring Ralph Freese, Bill Lampe and J.B

Sylvia Silberger

5.23.2018

Definitions I

Definition

Let \mathcal{F} be the family of finite subsets of \mathbb{N}. For any $X \subseteq \mathbb{N}$, let $\mathcal{F}(X)$ be the family of finite subsets of X. Let \mathcal{I} denote the family of finite sets of consecutive natural numbers

$$
[m, n]:=\{m, m+1, \ldots, n\}
$$

Definition

Define the function $\sigma: \mathcal{F} \rightarrow \mathbb{Q}^{+}$by

$$
\sigma S=\sum_{n \in S} \frac{1}{n}
$$

Definitions II

Definition

For $r \in \mathbb{Q}^{+}$, let $\mathcal{F}_{r} \subseteq \mathcal{F}$ denote the family of finite $S \subseteq \mathbb{N}$ for which $\sigma S=r$.

Definition

We define the functions $\nu: \mathcal{F} \rightarrow \mathbb{N}$ and $\delta: \mathcal{F} \rightarrow \mathbb{N}$ by $\sigma S=\frac{\nu S}{\delta S}$, where νS and δS are coprime.

Example

We let $I=[2,4]=\{2,3,4\}$ and $S=\{3,4,5,7,12,20,42\}$. Then,

$$
\sigma I=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}=\sigma S
$$

We see $\{I, S\} \subseteq \mathcal{F}_{13 / 12}$ and $\delta I=\delta S=12, \nu I=\nu S=13$.

Theorem 1 (Surjectivity)

For each $r \in \mathbb{Q}^{+}$, there is an infinite pairwise disjoint family $\mathcal{H}_{r} \subseteq \mathcal{F}_{r}$.

Theorem 2 (Injectivity)

Let X be a pairwise coprime subset of \mathbb{N}. Then $\sigma \mid \mathcal{F}(X)$ and $\delta \mid \mathcal{F}(X)$ are injections. Also, $\sigma C \in \mathbb{N}$ for $C \in \mathcal{F}(X)$ if and only if $C=\{1\}$.

Background I

Theisinger-Kürschák

L. Theisinger [10] proved in 1915 that $\sigma[1, n] \in \mathbb{N}$ only if $n=1$. In 1918 J. Kürschák [6] proved that $\sigma[m, n] \in \mathbb{N}$ only if $m=n=1$.

Erdös

If $d \geq 1$, and if either $m>1$ or $k>1$, then $\sum_{j=0}^{k-1} \frac{1}{m+d j} \notin \mathbb{N}$. [3]

Background III

Belbachir and Khelladi
For $\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\} \subseteq \mathbb{N}$, if $d \geq 1$, and if either $m>1$ or $k>1$, then $\sum_{j=0}^{k-1} \frac{1}{(m+d j)^{a_{j}}} \notin \mathbb{N}$. [1]

Obláth

$\sum_{i=m}^{n} \frac{a_{i}}{i} \notin \mathbb{N}$ if i is coprime to a_{i} for each $i \in[m, n]$, where $[m, n] \neq\{1\}$. [3]

Background IV

Erdös -Niven

The function $\sigma \mid \mathcal{I}$ is injective. $([4], 1946)$

Surjectivity Theorem

Theorem 1

For each $r \in \mathbb{Q}^{+}$, there is an infinite pairwise disjoint family $\mathcal{H}_{r} \subseteq \mathcal{F}_{r}$.

Vital Identity

For all $z \notin\{-1,0\}$

$$
\frac{1}{z}=\frac{1}{z+1}+\frac{1}{z(z+1)}
$$

Definition

Define $\diamond: \mathbb{N} \rightarrow \mathbb{N}$ and $\star: \mathbb{N} \rightarrow \mathbb{N}$ by $\diamond n=n+1$ and $\star n=n(n+1)$.
Then the Vital Identity says

$$
\frac{1}{n}=\frac{1}{\diamond n}+\frac{1}{\star n} \quad \longrightarrow \quad \sigma\{n\}=\sigma\{\diamond n, \star n\}
$$

Surjectivity Theorem

Definition

Let \mathbf{W} denote the set of all finite words \mathbf{w} in the letters \diamond and \star. Each word $\mathbf{w}: \mathbb{N} \rightarrow \mathbb{N}$ can be thought of an injection under composition of its letters. We let $\mathbf{W}_{k} \subseteq \mathbf{W}$ be the words of length k in \mathbf{W}. For each $n \in \mathbb{N}$ we let $\mathbf{W} n$ denote the (perhaps multiset) $\{\mathbf{w} n \mid \mathbf{w} \in \mathbf{W}\}$. We define $\mathbf{W}_{k} n$ analogously.

Example

We can let $\mathbf{w}=\diamond \star \diamond^{2} \in \mathbf{W}_{4}$. Then

$$
\mathbf{w} 1=\diamond \star \diamond^{2} 1=\diamond \star \diamond 2=\diamond \star 3=\diamond 12=13 \in \mathbf{W} \quad 4 \subseteq \mathbf{W} 1
$$

Outline of Proof of Surjectivity Theorem (Theorem 1)

Lemma 1

Let $\mathbf{w} b=n=\mathbf{w}^{\prime} b$ with $\mathbf{w} \neq \mathbf{w}^{\prime}$. Then $|\mathbf{w}| \neq\left|\mathbf{w}^{\prime}\right|$.

Corollary 2

Each $\mathbf{W}_{k} n$ is a simple set.

Lemma 3

If k is a nonnegative integer, then $\sigma\left(\mathbf{W}_{k} b\right)=\frac{1}{b}$.

Proof of Lemma 3

(basis) $\sigma\left(\mathbf{W}_{0} b\right)=\sigma\{b\}=\frac{1}{b}$.
(ind step) Suppose $\sigma\left(\mathbf{W}_{k} b\right)=\frac{1}{b}$. Note that
$\mathbf{W}_{k+1}=\left\{\diamond \mathbf{w} \mid \mathbf{w} \in \mathbf{W}_{k}\right\} \cup\left\{\star \mathbf{w} \mid \mathbf{w} \in \mathbf{W}_{k}\right\}$ and for each $\mathbf{w} \in \mathbf{W}_{k}$, $\sigma\{\diamond \mathbf{w} b, \star \mathbf{w} b\}=\sigma(\mathbf{w} b)$.

Outline of Proof of Surjectivity, Continued

Corollary 4

Let $b \geq 2$. Then there exists an infinite pairwise disjoint family $\mathcal{G}_{b} \subseteq \mathcal{F}$ such that $\sigma S=\frac{1}{b}$ for each $S \in \mathcal{G}_{b}$.

Idea of Proof

We know \diamond and \star are increasing. Choose sequence k_{1}, k_{2}, \ldots of integers far enough apart to ensure $\max \mathbf{W}_{k_{i}} b<\min \mathbf{W}_{k_{i+1}} b$.

Outline of Proof os Surjectivity, Continued

Theorem 1

For each $r \in \mathbb{Q}^{+}$, there is an infinite pairwise disjoint family $\mathcal{H}_{r} \subseteq \mathcal{F}_{r}$.

Proof.

Let $r=\frac{a}{b}, b \geq 2$. Let $\mathcal{G}_{b}=\left\{S_{1}, S_{2}, S_{3}, \ldots\right\}$ and for each $n \in \mathbb{N}$ define

$$
T_{n}:=\bigcup_{i=0}^{a-1} S_{a n+i}
$$

Injectivity |

Definition

For integers m and n, we write $m \mid n$ for " m divides n " and $m^{v} \| n$ for $" m^{v}$ divides n exactly" $\equiv m^{v} \mid n$, but $m^{v+1}+n$.

Chebyshev's Theorem (Bertrand's Postulate)

If $n \geq 2$ then there is a prime p such that $n<p<2 n$.

Sylvester's Theorem

If $n<2 m$ then there is a prime $p>n-m$ for which $p \mid \operatorname{lcm}[m, n]$.

Corollary

If $m<n$ then there is a prime $p>n-m$ such that $p^{v} \| \operatorname{lcm}[m, n]$ for some $v \in \mathbb{N}$, and $p^{v} \| x$ for exactly one $x \in[m, n]$.

Sylvester Powers

Definition

For $X \in \mathcal{F}$, when $v \in \mathbb{N}$ and p is prime, we call p^{v} a Sylvester power of X if $p^{v} \| \operatorname{lcm}(X)$ and $p^{v} \| x$ for exactly one $x \in X$. We will let $S(X)$ denote the set of all Sylvester powers of X.

Example

$$
\begin{gathered}
{[1000,1004]=\{1000,1001,1002,1003,1004\}} \\
=\left\{2^{3} \cdot 5^{3}, 7 \cdot 11 \cdot 13,2 \cdot 3 \cdot 167,17 \cdot 59,2^{2} \cdot 251\right\} \\
S[1000,1004]=\left\{2^{3}, 3,5^{3}, 7,11,13,17,59,167,251\right\}
\end{gathered}
$$

Injectivity II

Lemma 1

For a prime p, if $p^{v} \| \operatorname{lcm}(X)$ while $p^{\vee}>\max X-\min X$ then $p^{v} \in S(X)$ and if $2^{v} \| \operatorname{lcm}[m, n]$ then $2^{v} \in S[m, n]$.

Lemma 2
For $X \in \mathcal{F}$ and p prime and $v \in \mathbb{N}$, let $p^{\vee} \in S(X)$. Then $p^{v} \| \delta X$.

Corollary: Theisinger-Kürschák
$\sigma[m, n] \in \mathbb{N}$ only if $m=n=1$.

Injectivity III

Theorem

For $\{X, Y\} \subseteq \mathcal{F}$ and $v \in \mathbb{N}$, let $p^{v} \in S(X) \backslash S(Y)$ with $p^{v}>\max Y-\min Y$. Then $\delta X \neq \delta Y$ and so $\sigma X \neq \sigma Y$.

Proof of Theorem

By Lemma 3, $p^{v} \| \delta X$.
There exists $u \geq 0$ such that $p^{u} \| \operatorname{lcm}(Y)$. Since $p^{v} \notin S(Y)$ and $p^{v}>\max Y-\min Y, u \neq v$.
If $u>v$, then $p^{u} \in S(Y)$ and so $p^{u} \| \delta Y$. So $\delta Y \neq \delta X$.
If $u<v$, then the biggest power of p that divides δY is less than p^{v} and so $\delta Y \neq \delta X$.

Proof of Theorem 2

Theorem 2

Let X be a pairwise coprime subset of \mathbb{N}. Then $\sigma \mid \mathcal{F}(X)$ and $\delta \mid \mathcal{F}(X)$ are injections. Also, $\sigma C \in \mathbb{N}$ for $C \in \mathcal{F}(X)$ if and only if $C=\{1\}$.

Proof of Theorem 2

Let $X \subseteq \mathbb{N}$ be pairwise coprime and $\{A, B\} \in \mathcal{F}(X)$ with $A \neq B$. Then WLOG there is $a \in A \backslash B$ and a prime p that divides a but does not divide any element of $(A \backslash\{a\}) \cup B$. Then some power of p is in $S(A)$ and hence divides δA, but p does not divide δB.
Thus, $\delta A \neq \delta B$ and so $\sigma A \neq \sigma B$.

Questions

Question 1

Does there exist an $X \subseteq \mathbb{N}$ such that $\sigma \mid \mathcal{F}(X)$ is bijective onto \mathbb{Q}^{+}?

Question 2

If $1<m<n<m^{\prime}<n^{\prime}$ and if $n-m \leq n^{\prime}-m^{\prime}$, can we conclude $S[m, n] \neq S\left[m^{\prime}, n^{\prime}\right]$?

Further Reading I

(1] H. Belbachir and A. Khelladi, On a sum involving powers of reciprocals of an arithmetic progression, Ann. Mathematicae et Informaticae 34 (2007), 29-31.

䍰 [2] P. Erdös, Egy Kürschák-Féle Elemi Számelméleti Tétel Általánosítása, Matematikai és Fizikai Lapok BD. XXXIX, Budapest (1932), 1-8.

屋 [3] P. Erdös, A theorem of Sy/vester and Schur, J. London Math. Soc. 9 (1934), 191-258.
R [4] P. Erdös and I. Niven, Some properties of partial sums of the harmonic series, Bull. Amer. Math. Soc. 52 (1946), 248-251.
R [5] P. Hoffman, "The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth", N. Y. Hyperion, 1998.

Further Reading II

圊［6］J．Kürschák，Matematikai és Fizikai Lapok， 27 （1918）， 299.
嗇［7］T．N．Shorey，Theorems of Sy／vester and Schur，Math． Student（2007），Special Centenary Volume（2008），135－145． Online article（http：／／www．math．tifr．res．in／ shorey／newton．pdf）．

䍰［8］I．Schur，Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen．II．Sitzungsber．Preuss．Akad．Wiss． Berlin Phys．Math．K1． 14 （1929），370－391．
（9］J．J．Sylvester，On Arithmetical Series，Messenger of Math． 21 （1892），1－19，87－120（Collected Mathematical Papers，Bd． 14，687－731）．
［10］L．Theisinger，Bemerkung über die harmonische Reihe， Monatshefte für Mathematik und Physik 26 （1915），132－134．

