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Our subject matter.

We will be concerned with some finite two-dimensional
simplicial complexes, such as

(Three triangles, then eight.) We will exhibit lattice equations
that are continuously satisfiable on some but not all of such
spaces. Results phrased in terms of lattice homomorphisms.



The topological lattice ∆(M3) and its antecedents

G. Gierz and A. Stralka, AU
1989

“Modular lattices on the 3-cell
are distributive”
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The spaces ∆(Mn)

(1,1,1,1)

(0,0,0,0)

(0,0,1,0)

(0,0,0,1)
(1,0,0,0)

(0,1,0,0)

Figure: The topological space ∆(M4) — the 4-book

Warning: no particular page order.



BTW people have studied book spaces. E.g. knots:

A trefoil knot in ∆(M3)

Persinger, PJM, 1966



How to make ∆(Mn) into a lattice.

Each pair of flaps forms a sublattice K isomorphic to [0, 1]2.
(With (1, 1) at the top and (0, 0) at the bottom.) If x and y
belong to the two flaps, their join is as in [0, 1]2.

x y

x ∨ y

x ∧ y

When do we have x ∧ y = 0?
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Why this lattice on ∆(Mn) is modular.
Given the red pentagon QEPFG in ∆(M3):

G

E

P

Q

F

S

T

So take two new green points, S and T , with G ≤ T ≤ S
≤ F , along the segment rising from G to F . Now {E , S ,T}
generates a pentagon inside a two-flap sublattice.
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Internet proof that ∆(M3) cannot be distributive

A search on “distributive topological lattice compact” quickly
took me to this conclusion of K. Baker and A. Stralka, 1970:

This led me to look up “breadth lattice topological,” and here
is what came up first:



Internet proof, continued

T. H. Choe, 1969:



A Kuratowski (et al.) forbidden graph, in ∆(M3)
K3,3 (3 houses, 3 utilities) — sketch courtesy of G. Bergman:

Thus the topological space ∆(M3) is not embeddable in R2.
Contradiction. So there are no continuous lattice operations
making ∆(M3) into a distributive lattice. [Or use trefoil knot.]
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A (0,1)-homomorphism from M3 to ∆(M3).
1

0

a0 a1 a2

1

0

In general Mn −→ ∆(Mn), but Mn+1 6−→ ∆(Mn). Here we
mean, there are no continuous lattice operations on the
space ∆(Mn) admitting a (0,1)-homomorphism from
Mn+1.

W Taylor, AU 78 (2017), 601–612.
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Proof that Mn+1 6−→ ∆(Mn).

Easy fact: in our topological lattice ∆(Mn), if a ∧ b = 0 with
a 6= 0, b 6= 0, or dually, then a and b both lie on the periphery
of ∆(Mn). (Remember that the meet takes place in a
sublattice isomorphic to [0, 1]2.)

Theorem (more difficult). This holds for any compatible lattice
structure on the space ∆(Mn). — J W Lea, Jr. (1973) —
Proof: algebraic topology.

(This is true for a large class of topological spaces.)
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Proof that Mn+1 6−→ ∆(Mn), continued

If we had a (0, 1)-homomorphism φ into a topological lattice:

1

0

a0 a1 a2 a3
φ

then the four sets [0, φ(ai)] ⊆ ∆(M3) would be non-trivial
connected subsets of the periphery, disjoint except for one
point in common. It is almost obvious that four such sets do
not exist in the periphery of ∆(M3).
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Alternate viewpoint; one motivation for this work.

Let A be a topological space. (1) There exist continuous
lattice operations ∧ and ∨ on A and a 0, 1-homomorphism
φ :Mn −→ 〈A,∧,∨〉, iff (2) the space A is compatible with
these identities:

I Axioms, in ∧, ∨, 0 and 1, for lattice theory with 0 and 1;

I ai ∨ aj ≈ 1 (for 0 ≤ i < j < n);

I ai ∧ aj ≈ 0 (for 0 ≤ i < j < n).

Of these two, we shall routinely use the viewpoint (1).
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Assembly of a space Km
n from [0, 2]× [0, 1]

0

1

A

B

0

1

A B

T −→

←− T

0

L

1

Ai

Bj

m copies of T , joined along 1C ; −→

←− n copies of T , joined along 0LC
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Making the space Km
n into a topological lattice Km

n

A Hall-Dilworth gluing of ∆(Mm+1) and ∆(Mn+1):

0

L
L′

1

Ai

Bj

m copies of T , joined along 1C −→

←− n copies of T , joined along 0L′

C

C ′



Another view of the lattice operations on Km
n

We illustrate x ∨ y for x ∈ Ai and y ∈ Bj . We take our
rectangular picture of Km

n , making sure that Ai and Bj are at
the top of their respective stacks. Then we join x and y by
intersecting upward lines parallel to the sides of the rectangle.

x
y

Ai

Bj

(Of course one needs to verify that gluing leads to this
picture.)
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The role of the finite lattice Mp
q.

We build a corresponding finite lattice by gluing Mp and Mq:

0

λ

1

p nodes αi −→

←− q nodes βj
γ

ψ

0

L

1

Ai

Bj
C

m

n

Theorem.There exist continuous lattice operations on the
space Km

n , and a (0,1)-homomorphism ψ as indicated, if and
only if p ∨ q ≤ m ∨ n and p ∧ q ≤ m ∧ n.

Proof of “only if”: the periphery argument from before. (In
this direction, there is no assumption that the points αi , βj , γ,
. . . , map to Ai , Bj , C , . . . .)
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The corresponding compatibility/incompatibility

result.

0

λ

1

p nodes αi −→

←− q nodes βj
γ

ψ

0

L

1

Ai

Bj
C

m

n

Equivalently, The space Km
n topologically models Σp

q

((0,1)-lattice theory plus equations defining the finite lattice
Mp,q) if and only if p ∨ q ≤ m ∨ n and p ∧ q ≤ m ∧ n.



Stretching Km
n and Mp,q.

0

0

0

1

1

1

q 0

p

1

m

n

The finite lattice here maps onto a two-element lattice (as
indicated by the labels); hence it maps into any topological
lattice; hence it does not contribute to our discussion.
Clearly the previous example was more interesting since it is
simple.



A symmetric example.

γ δ

1

µ ν

0

p αi βj q

C D

1

M N

0

m Ai Bj n

Comments.

(1) The space here is homeomorphic to the space
Km

n that we already examined, but the two finite lattices are
non-isomorphic.(2) Our lattice here has exactly two non-trivial
homomorphic images: Mp and Mq. (3) This arises from a H-D
gluing.
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So we must also consider this possibility:



Analysis of the symmetric example.

γ δ

1

µ ν

0

p αi βj q

C D

1

M N

0

m Ai Bj n

Theorem This space can be made into a topological lattice so
that there is a homomorphism from the finite lattice to the
topological lattice, iff p ∧ q ≤ m ∨ n.



Previous example doubled (drawn p = q · · · = 2)

Lea’s Theorem does not force the four central points here to
map to the periphery, so only the colored lines indicate
intervals that must lie in the periphery.
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Thus this possiblity remains unsettled:

2 3

2 3

?

2

3

3

2

Our usual method of construction fails here. Meanwhile our
necessary condition (having the right configuration exist in the
periphery) is still satisfied.
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Another way of possibly defining a hom here:
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Open questions

0. Does there exist a space that can be a topological lattice,
but not a modular topological lattice? Can it be a finite
simplicial complex?

1. How far can this go? Full analysis of the topology?

2. Are there results for spaces with a 2-D periphery? (Lea’s
Theorem is still valid.)

3. Strengthening of Lea’s Theorem?

4. General theory of homomorphism Finite Lattice −→ Top
Lattice? Or more generally, Finite Algebra −→ Topological
Algebra? Or of finite sublattices of topological lattices?


